Ремонт блока питания атх компьютера своими руками. Как отремонтировать блок питания компьютера

Ремонт блока питания атх компьютера своими руками. Как отремонтировать блок питания компьютера

— во многом проблемы компьютерному блоку питания доставляют наши электросети. Не секрет, что стабильность переменного напряжения в сети оставляет желать лучшего, вот такая ситуация чаще всего приводит к негативным последствиям с бытовой техникой. Скачки сетевого напряжения пагубно влияют и на блок питания ПК, даже если он находится в режиме ожидания.

Данная публикация посвящена радиолюбителям, которые имеют навыки в ремонте электроники, и даются советы как сделать. Существует доступный метод проверки на исправность источника напряжения. Прежде, чем приступать к поиску неисправности его следует отсоединить от системной платы, естественно при обесточенном компьютере. Элементарно разъединяются коннекторы с проводами идущие с блока питания на материнку. У разных моделей БП АТХ основные соединительные разъемы бывают как 20-ти пиновые так и 24 pin, плюс вспомогательные провода питания 4-х или 6-ти pin. Эти добавочные провода предназначены для обеспечения напряжением +12v процессора и видеокарты. После того как все компоненты будут отсоединены от блока, начинается сам процесс проверки устройства.

Для этого нужно взять самый большой жгут проводов и на его разъеме найти два контакта обозначенные номерами 15 и 16 с зеленым и черным проводом. На разных соединителях нумерация может отличаться, но основной ориентир, это зеленый и любой черный провод. Затем тестовую модель включить в сеть 220v, и небольшим отрезком провода замкнуть два этих контакта. В следствии этого замыкания подается сигнал на материнскую плату и БП стартует. Здесь этот кусочек замыкающего провода просто играет роль обыкновенного выключателя. В случае после замыкания вентилятор начал работать, то с большей вероятностью можно определить, что блок питания находится в рабочем состоянии. Поэтому проблему необходимо искать в другом месте.

Последовательность ремонта

Следовательно, начиная пошагово ремонт блока питания компьютера своими руками нудно понимать, что установленные с силовых цепях конденсаторы имеют большую емкость. Именно они накапливают огромный запас энергии для последующей его передачи в нагрузку. Поэтому нужно всегда быть осторожным при работе с силовой частью, так что прежде чем начинать проверку прибора обязательно следует разрядить емкости. Иначе можно получить такой разряд, что мало не покажется, к тому же накопленная энергия в конденсаторах сохраняется долгое время.

У меня был случай, когда я вспомнил о валявшемся пол года в сарае конденсаторе на 10000uf 400v. А когда я хотел почистить его от пыли, то получил такой разряд, что в глазах потемнело и кожа на пальцах лопнула от ожога. Так что будьте всегда предельно внимательны во время работы с приборами, где установлены конденсаторы с большой емкостью. Разрядить кондер очень просто, берете (в зависимости от емкости) резистор 1 кОм мощностью 10 Вт, или обыкновенную электрическую лампочку и происходит мягкий разряд.



Разборка устройства

Первым делом естественно снимается крышка корпуса и в обязательном порядке приводится в надлежащий вид все внутреннее пространство, то есть удаляется вся накопившаяся там пыль. Образовавшийся там наслоение от пыли играет свою негативную роль в плане отвода тепла исходящего от силовых элементов. Поэтому излишнее загрязнение компьютерного блока питания также может быть одним из факторов выхода его из строя. Потом уже по сути начинается ремонт блока питания компьютера своими руками пошагово .

Одной из причин отказа в работе прибора может быть банальное перегорание предохранителя 5А. Так что он проверяется на обрыв мультиметром в первую очередь и если показывает обрыв, то заменить на новый или сделать «жучок» из сгоревшего. Для этого поверх стеклянного цилиндра предохранителя припаять медную жилу Ø 0,16мм, затем подать сетевое напряжение на блок — если вентилятор работает, значит все нормально. Теперь этот «жучок» нужно убрать, а вместо его поставить новый, заводского изготовления.

Поиск неисправных конденсаторов

Как правило компьютерные блоки питания смонтированы с использованием электролитических конденсаторов со значительной емкостью. Но вместе с тем есть не добросовестные производители БП, которые в целях экономии устанавливает кондеры с пониженным значением допустимого напряжения. Такие устройства в большинстве случаев относятся к категории дешевых изделий и выходят из строя чаще других. Именно такие электролиты, которые изготовлены без запаса по напряжению становятся главной проблемой в источниках питания.

При малейшем скачке напруги в сети, емкость не выдерживает этого всплеска энергии. При этом происходит либо разрыв оболочки, в следствии сильного нагрева электролита, либо радио-компонент раздувается и их него вытекает электролит. Естественно такие элементы уже не пригодны к дальнейшему использованию и их нужно менять.

Внимание! Плохая работа вентилятора становится причиной вздутия конденсаторов. Все дело в том, что вентилятор должен охлаждать конденсаторы, которые подвергаются нагреву за счет аккумулирования напряжения в них. Поэтому специалисты рекомендуют периодически проводить смазку подшипников вентилятора и чистку всего куллера.

В некоторых случаях визуальных дефектов конденсатора не обнаружено, однако лучше всего перестраховаться и протестировать их омметром с целью выявления внутреннего сопротивления. Если сопротивление велико относительно номинального, то скорее всего нет контакта между обкладкой накопителя электрической энергии и выводом, то-есть — обрыв.

Продолжая тему электролитических накопителей энергии, стоит пояснить такой момент. Замена таких «надутых» компонентов на новые будет преждевременной, если предварительно не локализовать проблему приведшую к их вздутию. В противном случае, ну замените вы их на новые, а они через некоторое время опять станут «беременными»)), и все сначала. Как показывает практика, причина такой неисправности кроется в не корректной стабилизации питающего напряжения либо его отсутствие вообще. Посему, пока не обнаружите отчего это происходит, делать замену вздутых на новые не нужно.

Еще раз хочу предостеречь всех, у кого нет определенного опыта в ремонте таких аппаратов — не беритесь делать ремонт блока питания компьютера своими руками пошагово . Это может вам обойтись намного дороже, чем отдать блок питания в ремонт специалистам. Помимо всего прочего, для ремонта такой техники необходимо профессиональное оборудование.

Управляющие транзисторы и мощные ключи

Любой установленный в схеме транзистор является полупроводниковым прибором, который также подвержен экстремальным процессам происходящих в нем. Поэтому, ремонт блока питания компьютера своими руками пошагово и последовательно. После конденсаторов подлежат проверке и эти полупроводники. Чтобы определить состояние транзистора, необходимо проверить мультиметром переходы база-коллектор и база эмиттер в обеих направлениях. Делается это с целью выявления обрыва или короткого замыкания на этих переходах.

Тоже самое следует проделать на переходах коллектор-эмиттер, при этом желательно отпаять один конец резистора установленного в цепи эмиттера. После этого уже делается заключение о пригодности этого элемента. Затем переходим к проверке выпрямительных диодов, проверяем их таким же методом как и транзисторы — диод в одну сторону показывает высокое сопротивление, а в другую сторону ничего не показывает, то-есть переход закрыт.

Модернизация блока питания

Что может дать усовершенствование компьютерного источника питания? Под модернизацией подразумевается некоторая переделка устройства, в частности замена определенных электронных компонентов на более качественные для повышения надежности схемы. В понятие небольшой переделки входит именно замена установленных в силовом тракте конденсаторов на фирменные емкости с большим значением номинального напряжения. Почему именно фирменные? Потому, что среди импортных можно подобрать размеры соответствующие месту монтажа на плате, к том уже с большим напряжением, чем у оригинала.

Внимание! Замена конденсатора связана с правильной его установкой на плато. Поэтому обратите внимание на полосу отрицательного вывода. Она широкая вертикальная и светлая. Так вот новый прибор необходимо установить точно в таком же положении, чтобы полоса попала на старое место установки.

Теперь когда все подозрительные и явно вышедшие из строя элементы вы поменяли на исправные, то БП без проблем должен включится. Один из основных показателей работоспособности аппарата — это старт и стабильная работа вентилятора, отсутствие явного перегрева деталей на холостом ходу. Существует другой метод проверки готовности блока к работе, более профессиональный. Этот метод заключается в тестировании всех электрических параметров установленных в схеме радио-элементов. На контактах в соединительных разъемах величина напряжений должна соответствовать 12v и 5v.

Из выше изложенного следует: ремонт компьютерного блока питания не такой уж и простой как может показаться изначально. Однако, как говорилось выше, если имеются хотя бы начальные знания в радиоэлектронике, то можно взяться и за самостоятельный ремонт. При этом желательно иметь под рукой принципиальную схему прибора и хорошенько ее изучить.

Наверное, многим пользователям ПК приходилось сталкиваться с такой ситуацией, когда компьютер не включается (не реагирует на нажатие кнопки включения: не загораются лампочки, не начинают крутиться вентиляторы кулеров). В данной статье мы расскажем, что нужно делать,когда ПК не подает признаков жизни.

Думаю, всем понятно, что главное – это выяснить причину неисправности железа (проблема, скорее всего в железе, ведь из софта на начальной стадии включения компьютера задействован только BIOS).

Что же нужно делать, когда не включается компьютер?

Первым делом, необходимо убедиться, что на блок питания (БП) компьютера подается напряжение .

Для этого:

  • проверяем, включен ли компьютер в сеть ;
  • проверяем на работоспособность сетевой фильтр (подключите другое заведомо исправное электрическое устройство в сетевой фильтр);
  • проверяем, включен ли блок питания (если у него есть кнопка включения/отключения). Кроме этого, переключатель 110/220 Вольт (при наличии) должен быть в положении 220 В.;
  • проверяем наличие хорошего контакта между блоком питания и сетевым шнуром;
  • проверяем сетевой шнур системного блока. Необходимо подсоединить кабель от системного блока к монитору, например. Если лампочка на мониторе начала мигать, значит, кабель исправный.

Если БП получает питание, но компьютер не включается , переходим к следующему пункту:

Проверяем на работоспособность сам блок питания.

Как проверить блок питания? Берем заведомо исправный блок питания и подсоединяем к материнской плате Вашего ПК. Ничего сложного здесь нет. Если Вы делаете это впервые, просто поочередно отсоединяйте кабеля с БП на материнской плате и подсоединяйте с другого блока питания.

Если у Вас нет другого БП, необходимо проверять блок питания вручную . Для этого отсоединяем от материнской платы провода с блока питания и замыкаем (с помощью любого токопроводящего материала: скрепка и.т.п.) зеленый и черный контакты (выводы 14 и 15). После замыкания должен начать крутится вентилятор внутри блока питания. Если вентилятор молчит и Вы все сделали правильно – необходимо заменить блок питания (лучше заменить, нежели ремонтировать). При этом помните, если “полетел” БП, нужно проверять также все составляющие внутри системного блока (материнскую плату, процессор, винчестер…).

Если блок питания включается, проверяем величину напряжения , которое подается на материнскую плату (на выходе блока питания). Берем тестер (вольтметр) замеряем напряжения на выходах БП. В технической документации к материнской плате ищем напряжения, которые на нее подаются, и сверяем с теми, которые мы получили. Если напряжение не соответствует норме — необходима замена (возможно, ремонт) блока питания.

Если блок питания исправен, переходим к следующему пункту.

Проверяем состояние кнопок (бывает, что они западают). Все нормально? Тогда вручную замыкаем контакты включения электропитания (они находятся на материнской плате). Для этого снимаем крышку (левую боковую) системного блока и осматриваем провода, которые идут с передней панели (где размещена кнопка включения) к материнской плате. Ищем тот провод, на штекере которого есть надпись (выключатель питания). Возможны варианты надписей , … Если не можете найти, необходимо взять инструкцию к материнской плате. В инструкции должно быть описание всех разъемов на материнской плате с соответствующими изображениями. Нашли? Тогда вынимаем штекер из разъема и замыкаем освободившиеся контакты, например, пинцетом. Компьютер все еще не включается? Двигаемся дальше.

Сбрасываем настройки BIOS . Это можно сделать:

  • при помощи джампера (перемычка, позволяющая выставить режим работы устройства замыканием/размыканием нескольких контактов) Clear CMOS — должен располагаться рядом с батарейкой питания BIOS на материнской плате;
  • вытащив батарейку питания Bios .

Кроме этого проверяем вольтаж батарейки питания BIOS . Если значение сильно колеблется относительно 3В – покупаем новую батарейку.

Компьютер еще не включается? Извлекаем материнскую плату из системного блока , чистим от пыли. Запускаем компьютер.

Если после всех приведенных выше действий компьютер не включился — проблема более дорогостоящая. Извлекаем из материнской платы все компоненты: процессор, модули оперативной памяти, отсоединяем винчестер и другие элементы. Нужно оставить блок питания, материнскую плату, и подключенные провода с кнопок power/reset. Включаем компьютер. Что мы видим?

  • вентилятор блока питания не вращается (или запускается и после нескольких секунд работы отключается – срабатывает защита БП) – неисправна материнская плата. Покупаем новую или относим в сервис на диагностику и ремонт.
  • вентилятор блока питания вращается (постоянно). Делаем вывод, что проблема кроется, скорее всего, не в материнской плате.

Поочередно подсоединяем к материнской плате компоненты , которые мы извлекли ранее. Первым подсоединяем системный динамик. Дальше подключаем:

Процессор.

Вставляем процессор в сокет (гнездо для процессора) и устанавливаем процессорный кулер (не забываем о использовании термопасты). После установки ЦП включаем ПК. Что мы видим?

  • вентиляторы блока питания и кулера процессора вращаются – это значит, что процессор работает нормально. Также из системного динамика должны быть слышны гудки (желательно иметь таблицу звуковых сигналов вашей версии BIOS, чтобы распознать их. В данной статье не приводятся звуковые сигналы BIOS – чтобы не запутать читателя, поскольку разные версии BIOS имеют свой набор звуковых сигналов).
  • вентиляторы останавливаются через несколько секунд после запуска, гудков не слышно – процессор вызывает короткое замыкание.
  • вентиляторы останавливаются через несколько секунд после запуска, гудки слышны срабатывает термозащита от перегрева ЦП . Скорее всего, Вы неправильно установили процессорный кулер. Устанавливаем систему охлаждения процессора заново. Не помогает? Нужно заменять ЦП.
  • напоследок, отсоединяем кулер от процессора и включаем компьютер на несколько секунд (до пяти). После проверяем температуру ЦП , прикоснувшись пальцем руки к процессору. Если проц холодный – он уже свое отслужил .

Оперативная память (ОЗУ, RAM).

Перед установкой ОЗУ необходимо очистить ее от пыли. Кроме этого отверткой проведите (легкими движениями) по контактах разъемов для оперативки на материнской плате. Далее устанавливаем модуль памяти в соответствующий разъем. После установки ОЗУ включаем ПК. Что мы видим?

  • вентиляторы вращаются – это значит, что модуль RAM работает нормально . Также из системного динамика должны быть слышны гудки. Смотрим в таблицу звуковых сигналов BIOS (которой, надеюсь, запаслись заранее) – звук не оповещает о какой-нибудь проблеме? Устанавливаем поочередно остальные модули памяти, если они имеются (компьютер должен быть отключенным). Проверяем. Возможна ситуация, когда нерабочим будет разъем для оперативки (проверяем добавлением в этот разъем другой пластины оперативной памяти).
  • компьютер сразу выключается. Слышны звуки из системного динамика (смотрим в таблицу звуковых сигналов BIOS – должны обозначать неисправность RAM). Значит, неисправен модуль ОЗУ или разъем . Поскольку на каждой материнке имеются несколько слотов для оперативки, проверить, что неисправно, не сложно.

Видеокарта

Перед началом проверки очистите видеокарту от пыли с помощью специальной кисточки или обдуйте пылесосом. Подсоединяем видеокарту в разъем. Включаем компьютер. Что мы видим?

Напряжение +5VSB, вырабатываемое этим источником, поступает на разъём блока питания для материнской платы (фиолетовый провод, 9-й контакт 20-ти контактного разъема ATX). Используется для питания материнской платы, USB (не всегда), а также для питания всей остальной начинки БП. Существуют различные способы реализации данного узла БП: на дискретных элементах или интегральных микросхемах.

РАССМОТРИМ РАЗЛИЧНЫЕ СХЕМЫ ИСТОЧНИКОВ ДЕЖУРНОГО НАПРЯЖЕНИЯ:

БЛОКИНГ-ГЕНЕРАТОР

Источник дежурного напряжения чаще всего выполняется в виде однотактного импульсного преобразователя по известной схеме блокинг-генератора. Основой данного способа реализации источника является усилитель с положительной обратной связью.

На рис. 1, в качестве примера, представлена схема источника дежурного напряжения БП MaxUs PM-230W. Питается данный источник через токоограничительный резистор R45 от 310 вольт, прямо с диодного моста. Имеет свой, импульсный трансформатор Т3 с четырьмя обмотками:

  • две первичные: основная и вспомогательная обмотка (для обратной связи).
  • две вторичные: с первой снимается напряжение от 15 до 20 вольт для питания начинки БП, а со второй - напряжение для выхода +5VSB.

Напряжением первой вторичной обмотки запитывается ШИМ-контроллер TL494 (через резистор небольшого номинала - около 22Ω). Со второй запитана материнская плата, мышь, USB. После подачи на базу транзистора Q5 начального смещения при помощи резистора R48, благодаря цепочке положительной обратной связи на элементах R51 и C28, схема переходит в автоколебательный режим. В данной схеме частота работы преобразователя определяется, в основном, параметрами трансформатора T3, конденсатора C28 и резистора начального смещения R48. Для контроля уровня выходного напряжения есть цепь отрицательной обратной связи. Если отрицательное напряжение со вспомогательной обмотки Т3 после выпрямителя на элементах D29 и С27 превышает напряжение стабилизации стабилитрона ZD1(16V), оно подается на базу транзистора Q5, тем самым запрещая работу преобразователя. Резистор R56 номиналом 0.5Ω в эмиттерной цепи Q5 является датчиком тока. Если ток, протекающий через транзистор Q5, превышает допустимый, то напряжение, поступающее через резистор R54 на базу Q9, открывает его, тем самым закрывая Q5. Цепь R47, С29 служит для защиты Q5 от выбросов напряжения.

Рис. 1 - схема источника дежурного напряжения БП MaxUs PM-230W.

Выходное напряжение источника +5VSB формируется интегральным стабилизатором U2(PJ7805, LM7805). С одной из вторичных обмоток Т3 напряжение в 10V после выпрямителя на D31 и фильтра на С31 поступает на вход интегрального стабилизатора U2. Напряжение с другой вторичной обмотки Т3 после выпрямления D32 и фильтрации C13 питает ШИМ-контроллер (TL494).

Существует еще один вариант реализации данного источника, но уже на одном транзисторе. В качестве примера на рис. 2 представлена схема источника дежурного напряжения БП Codegen (шасси: CG-07А, CG-11).



Рис. 2 - схема источника дежурного напряжения БП Codegen (шасси: CG-07А, CG-11).

В данной схеме отсутствует второй транзистор и резистор датчика тока. Другие номиналы элементов: резистора начального смещения (R81), цепи обратной связи (R82, C15). Цепь отрицательной обратной связи работает так же, как в предыдущей схеме. Если отрицательное напряжение со вспомогательной обмотки Т3 после выпрямителя на элементах D6, С12 превышает напряжение стабилизации стабилитрона ZD27(6V), оно подается на базу транзистора Q16, тем самым запрещая работу преобразователя. Выходные цепи реализованны так же, как и в предыдущей схеме.

На рисунке 3 представлена схема источника дежурного напряжения БП IW-ISP300A3-1. Отметим, что данная схема имеет весьма сильное сходство со схемой дежурного режима БП IW-P300A2-0, за исключением некоторых мелочей. Таким образом, все сказанное ниже будет в большенстве своем справедливо для обоих схем. Итак, мы имеем силовой ключ Q10 и каскад обратной связи собранный на Q9, U4, а так же использующий ресурсы ШИМ SG6105D (встоенный управляемый прецизионный шунт TL431).



Рис. 3 - схема источника дежурного напряжения БП IW-ISP300A3-1.

Принцип работы:

Резисторы R47 и R48 подают начальное смещение на Q10, запуская схему в автоколебательный режим работы. При этом, во избежании пробоя Q10, фиксируется максимальное напряжение на его затворе, при помощи стабилитрона D23(18В). Данная схема имеет отрицательную обратную связь по току. Максимальный ток через силовой транзистор Q10 ограничивают токовые резисторы R62 и R62A. Напряжение с этих резисторов через R60 подается на базу Q9 и по достижению максимального тока Q9 открывается, тем самым закрывая Q10 и останавливая дальнейший рост тока. Отрицательная обратная связь по напряжению реализована следующим образом: Во время работы напряжение, формируемое дополнительной обмоткой Т3, выпрямляется D22 и фильтруется С34. При увеличении выходного напряжения свыше 5В на 13 ножке U3 достигается напряжение срабатывания встроенной TL431(2,5В), формируемое делителем на элементах R58 и R59. Происходит шунтирование катода диода оптопары U4 на землю и через него начинает протикать ток по цепи +5VSB, диод U4, R56, TL431. Транзистор оптопары открывается, шунтируя напряжение обратной связи (сформированное на С34) на базу транзистора Q9. Транзистор открывается, закрывая Q10 и запрещая генерацию.

Следует отметить, что с целью максимально понизить себестоимость БП (это относится ко всем схемам БП, но в большей степени ко второй), фирмы-производители часто устанавливают в источнике дежурного напряжения малогабаритные компоненты, работающие на пределе, а зачастую - и с превышением своих электрических характеристик. В связи с этим, после непродолжительного времени работы эти элементы выходят из строя.

ИНТЕГРАЛЬНЫЕ МИКРОСХЕМЫ

Источник дежурного напряжения также может быть реализован на различных микросхемах. Рассмотрим несколько примеров релизации:

Пример 1 - TOPSwitch

На рисунке 4 представлена схема дежурного источника питания, в основе которой лежит ИМС компании Power Integrations, Inc. - так называемый TOPSwitch. Это первое поколение данных ИМС.

Микросхема имеет на борту следующие узлы:

  • Высоковольтный N-канальный КМОП-транзистор с открытым стоком;
  • Драйвер управления этим транзистором;
  • ШИМ-контроллер с внутренним генератором на 100кГц;
  • Высоковольтная цепь начального смещения;
  • Усилитель ошибки/регулируемый шунт;
  • различные цепи защиты.


Рис. 4 - Схема источника дежурного напряжения БП Delta Electronics DPS-260-2A.

По сути, это преобразователь, имеющий собственные цепи запуска и линейную зависимость скважности выходных импульсов от входного тока обратной связи.

Напряжение на ножке CONTROL является питающим либо заданием с цепей обратной связи. Разделение сигнала обратной связи от цепей контроля питанием происходит с использованием внутренних цепей ИМС и внешнего конденсатора С51, стоящего непосредственно возле ИМС.

В начальный момент времени внутренний высоковольтный источник тока коммутируется между ножками CONTROL и DRAIN. Питая ИМС, он также через R51 заряжает внешний конденсатор C51. При достижении напряжения 5.7V на конденсаторе, источник тока отключается, активируя ШИМ и схему управления силовым ключем. ШИМ-контроллер запускается в работу с минимальной скважностью выходных импульсов. Происходит разряд С51. В процессе разряда происходит увеличение скважности выходных импульсов и, соответственно, выходного напряжения. С дополнительной обмотки Т2 приходит напряжение ООС (отрицательной обратной связи). Минуя выпрямитель и фильтр на элементах D50 и С50, оно подается на стабилитрон ZD3. ООС реализованна таким образом, что в момент, когда выходное напряжение превышает допустимое, напряжение ООС достигает напряжения пробоя ZD3 и происходит заряд С51 по цепи D50-ZD3-D10-C51. Впоследствии происходит снижение скважности и выходного напряжения на вторичных обмотках.

Пример 2 - ICE2A0565Z

На рисунке 5 изображена схема дежурного источника на базе ИМС ICE2A0565Z. ICE2A0565Z - это второе поколение ИМС серии CoolSET компании Infineon Technologies AG. Данная микросхема имеет следующие характеристики:

  • 650(В) силовой транзистор с открытым стоком
  • Частота преобразователя 100(кГц)
  • Скважность до 72%
  • Защита от перегрева с автоматическим перезапуском
  • Защита от перегрузки и обрыва обратной связи
  • Защита от превышения напряжения
  • Регулируемый режим мягкого запуска
  • Регулирование пиковых значений тока внешним резистором

Диапазон питания данной ИМС от 8,5 до 21(В). Питается микросхема параметрическим стабилизатором на элементах: R52, R60, C7, C32, ZD2 (14V). Когда напряжение питания (Vcc) достигает порога в 13,5(В), происходит запуск внутренней цепи смещения и узла управления питанием (далее УУП). После этого УУП генерирует напряжение 6,5(В) для питания внутренних цепей, а так же все необходимые опорные напряжения. Разрешение на запуск ШИМ дают несколько узлов ИМС:

  • Узел защиты
  • Узел мягкого запуска
  • Узел ограничения тока
  • Узел режима тока


Рис. 5 - Схема источника дежурного напряжения БП Power Man IP-P350AJ2-0.

Первые три, так или иначе являются схемами защиты, а последний является основным регулировочным узлом ИМС. К нему и подводятся сигналы обратной связи (ОС) по напряжению и току. Резистор R73 установленный на ножке Isense задает максимальный ток для силового ключа. Снимаемое с него напряжение является заданием для регулирования выходного напряжения, а также для узла токовой защиты.

ПРИНЦИП РЕГУЛИРОВАНИЯ.

Во время работы напряжение с резистора R73 является функцией тока, текущего через силовой транзистор. Данное напряжение поступает на схему гашения переднего фронта в течении 220 нс. Это делается для исключения влияния выбросов тока на точность регулирования. Далее из этого напряжения формируется пилообразное напряжение, амплитуда которого прямо пропорциональна величине входного напряжения с R73, и подается на неинвертирующий вход компаратора ШИМ. С входа FB(2 нога) на инвертирующий вход компаратора ШИМ подается сигнал обратной связи по напряжению. Далее, сравнивая оба этих напряжения, этим компаратором осуществляется принцип вертикального регулирования ШИМ. Обратная связь формируется U5(TL431) и PC3(817). Резистивным делителем R57, R70 формируется напряжение для управляющего контакта U5. При увеличении этого напряжения выше 2,5(В) происходит замыкание катода диода оптопары PC3 на землю. Через него начинает протекать ток по цепи: D17, R53, PC3. Транзистор оптопары открывается и через него начинает течь ток по цепи: Rfb(внутренний резистор подтяжки к Uпит(6,5В)), R74, PC3. Напряжение на второй ноге ИМС уменьшается, уменьшая тем самым скважность выходных импульсов и, соответственно, выходное напряжение. При понижении выходного напряжения величина напряжения ОС на второй ноге ИМС растет, тем самым, увеличивая скважность и стремясь поддержать выходное напряжение на заданном уровне. При увеличении нагрузки в выходной цепи происходит и соответствующее ей изменение тока в первичной цепи. Повышается величина напряжения, снимаемого с резистора R73. Это в свою очередь приводит к увеличению амплитуды пилы на компараторе ШИМ и увеличению скважности выходных импульсов.

ПОДРОБНЕЕ О ЗАЩИТАХ ИМС.

  • Токовая защита.

При превышении напряжения ОС по току величины равной Vcsth(1В) происходит незамедлительное отключение силового ключа.

  • Напряжение питания.

ИМС начинает работу при достижении порога в 13,5(В) и выключается при понижении менее чем до 8,5(В). При резком скачке напряжения питания (включение) до порога в 16,5(В) срабатывает защита от перенапряжения с последующим отключением работы ИМС.

  • Обратная связь.

При превышении сигнала ОС по напряжению уровня в 4,8(В) происходит закрытие схемы управления силового ключа и прекращение генерации. Обрыв ОС приводит к тем же последствиям в течение 5мкс.

  • 186949 просмотров

Блок питания в компьютере (БП) – это самостоятельное импульсное электронное устройство, предназначенное для преобразования напряжения переменного тока в ряд постоянных напряжений (+3,3 / +5 / +12 и -12) для питания материнской платы, видеокарты, винчестера и других блоков компьютера.

Прежде, чем приступать к ремонту блока питания компьютера необходимо убедиться в его неисправности, так как невозможность запуска компьютера может быть обусловлена другими причинами .

Фотография внешнего вида классического блока питания АТХ стационарного компьютера (десктопа).

Где находится БП в системном блоке и как его разобрать

Чтобы получить доступ к БП компьютера необходимо сначала снять с системного блока левую боковую стенку, открутив два винта на задней стенке со стороны расположения разъемов.

Для извлечения блока питания из корпуса системного блока необходимо открутить четыре винта, помеченных на фото. Для проведения внешнего осмотра БП достаточно отсоединить от блоков компьютера только те провода, которые мешают для установки БП на край корпуса системного блока.

Расположив блок питания на углу системного блока, нужно открутить четыре винта, находящиеся сверху, на фото розового цвета. Часто один или два винта спрятаны под наклейкой, и чтобы найти винт, ее нужно отклеить или проткнуть жалом отвертки. По бокам тоже бывают наклейки, мешающие снять крышку, их нужно прорезать по линии сопряжения деталей корпуса БП.


После того, как крышка с БП снята обязательно удаляется пылесосом вся пыль. Она является одной из главных причин отказа радиодеталей, так как, покрывая их толстым слоем, снижает теплоотдачу от деталей, они перегреваются и, работая в тяжелых условиях, быстрее выходят из строя.

Для надежной работы компьютера удалять пыль из системного блока и БП, а также проверять работу кулеров необходимо не реже одного раза в год.

Структурная схема БП компьютера АТХ

Блок питания компьютера является довольно сложным электронным устройством и для его ремонта требуются глубокие знания по радиотехнике и наличие дорогостоящих приборов, но, тем не менее, 80% отказов можно устранить самостоятельно, владея навыками пайки, работы с отверткой и зная структурную схему источника питания.

Практически все БП компьютеров изготовлены по ниже приведенной структурной схеме. Электронные компоненты на схеме я привел только те, которые чаще всего выходят из строя, и доступны для самостоятельной замены непрофессионалам. При ремонте блока питания АТХ обязательно понадобится цветовая маркировка выходящих из него проводов.


Питающее напряжение с помощью сетевого шнура подается через разъемное соединение на плату блока питания. Первым элементом защиты является предохранитель Пр1 обычно стоит на 5 А. Но в зависимости от мощности источника может быть и другого номинала. Конденсаторы С1-С4 и дроссель L1 образуют фильтр, который служит для подавления синфазных и дифференциальных помех, которые возникают в результате работы самого блока питания и могут приходить из сети.

Сетевые фильтры, собранные по такой схеме, устанавливают в обязательном порядке во всех изделиях, в которых блок питания выполнен без силового трансформатора, в телевизорах, видеомагнитофонах, принтерах, сканерах и др. Максимальная эффективность работы фильтра возможна только при подключении к сети с заземляющим проводом. К сожалению, в дешевых китайских источниках питания компьютеров элементы фильтра зачастую отсутствуют.

Вот тому пример, конденсаторы не установлены, а вместо дросселя запаяны перемычки. Если Вы будете ремонтировать блок питания и обнаружите отсутствие элементов фильтра, то желательно их установить.

Вот фотография качественного БП компьютера, как видно, на плате установлены фильтрующие конденсаторы и помехоподавляющий дроссель.

Для защиты схемы БП от скачков питающего напряжения в дорогих моделях устанавливаются варисторы (Z1-Z3), на фото с правой стороны синего цвета. Принцип работы их простой. При нормальном напряжении в сети, сопротивление варистора очень большое и не влияет на работу схемы. В случае повышении напряжения в сети выше допустимого уровня, сопротивление варистора резко уменьшается, что ведет к перегоранию предохранителя, а не к выходу из строя дорогостоящей электроники.

Чтобы отремонтировать отказавший блок по причине перенапряжения, достаточно будет просто заменить варистор и предохранитель. Если варистора под руками нет, то можно обойтись только заменой предохранителя, компьютер будет работать нормально. Но при первой возможности, чтобы не рисковать, нужно в плату установить варистор.

В некоторых моделях блоков питания предусмотрена возможность переключения для работы при напряжении питающей сети 115 В, в этом случае контакты переключателя SW1 должны быть замкнуты.

Для плавного заряда электролитических конденсаторов С5-С6, включенных сразу после выпрямительного моста VD1-VD4, иногда устанавливают термистор RT с отрицательным ТКС. В холодном состоянии сопротивление термистора составляет единицы Ом, при прохождении через него тока, термистор разогревается, и сопротивление его уменьшается в 20-50 раз.

Для возможности включения компьютера дистанционно, в блоке питания имеется самостоятельный, дополнительный маломощный источник питания, который всегда включен, даже если компьютер выключен, но электрическая вилка не вынута из розетки. Он формирует напряжение +5 B_SB и построен по схеме трансформаторного автоколебательного блокинг-генератора на одном транзисторе, запитанного от выпрямленного напряжения диодами VD1-VD4. Это один из самых не надежных узлов блока питания и ремонтировать его сложно.

Необходимые для работы материнской платы и других устройств системного блока напряжения при выходе из блока выработки напряжений фильтруются от помех дросселями и электролитическими конденсаторами и затем посредством проводов с разъемами подаются к источникам потребления. Кулер, который охлаждает сам блок питания, запитывается, в старых моделях БП от напряжения минус 12 В, в современных от напряжения +12 В.

Ремонт БП компьютера АТХ

Внимание! Во избежание вывода компьютера из строя расстыковка и подключение разъемов блока питания и других узлов внутри системного блока необходимо выполнять только после полного отключения компьютера от питающей сети (вынуть вилку из розетки или выключить выключатель в «Пилоте»).

Первое, что необходимо сделать, это проверить наличие напряжения в розетке и исправность удлинителя типа «Пилот» по свечению клавиши его выключателя. Далее нужно проверить, что шнур питания компьютера надежно вставлен в «Пилот» и системный блок и включен выключатель (при его наличии) на задней стенке системного блока.

Как найти неисправность БП нажимая кнопку «Пуск»

Если питание на компьютер подается, то на следующем шаге нужно глядя на кулер блока питания (виден за решеткой на задней стенке системного блока) нажать кнопку «Пуск» компьютера. Если лопасти кулера, хоть немного сдвинуться, значит, исправны фильтр, предохранитель, диодный мост и конденсаторы левой части структурной схемы, а также самостоятельный маломощный источник питания +5 B_SB.

В некоторых моделях БП кулер находится на плоской стороне и чтобы его увидеть, нужно снять левую боковую стенку системного блока.

Поворот на маленький угол и остановка крыльчатки кулера при нажатии на кнопку «Пуск» свидетельствует о том, что на мгновенье на выходе БП появляются выходные напряжения, после чего срабатывает защита, останавливающая работу БП. Защита настроена таким образом, что если величина тока по одному из выходных напряжений превысит заданный порог, то отключаются все напряжения.

Причиной перегрузки обычно является короткое замыкание в низковольтных цепях самого БП или в одном из блоков компьютера. Короткое замыкание обычно появляется при пробое в полупроводниковых приборах или изоляции в конденсаторах.

Для определения узла, в котором возникло короткое замыкание нужно отсоединить все разъемы БП от блоков компьютера, оставив только подключенные к материнской плате. После чего подключить компьютер к питающей сети и нажать кнопку «Пуск». Если кулер в БП завращался, значит, неисправен один из отключенных узлов. Для определения неисправного узла нужно их последовательно подключать к блоку питания.

Если БП, подключенный только к материнской плате не заработал, следует продолжить поиск неисправности и определить, какое из этих устройств неисправно.

Проверка БП компьютера
измерением величины сопротивления выходных цепей

При ремонте БП некоторые виды его неисправности можно определить путем измерения омметром величины сопротивления между общим проводом GND черного цвета и остальными контактами выходных разъемов.

Перед началом измерений БП должен быть отключен от питающей сети, и все его разъемы отсоединены от узлов системного блока. Мультиметр или тестер нужно включить в режим измерения сопротивления и выбрать предел 200 Ом. Общий провод прибора подключить к контакту разъема, к которому подходит черный провод. Концом второго щупа по очереди прикасаются к контактам, в соответствии с таблицей.

В таблице приведены обобщенные данные, полученные в результате измерения величины сопротивления выходных цепей 20 исправных БП компьютеров разных мощностей, производителей и годов выпуска.

Для возможности подключения БП для проверки без нагрузки внутри блока на некоторых выходах устанавливают нагрузочные резисторы, номинал которых зависит от мощности блока питания и решения производителя. Поэтому измеренное сопротивление может колебаться в большом диапазоне, но не должно быть ниже допустимого.

Если нагрузочный резистор в цепи не установлен, то показания омметра будут изменяться от малой величины до бесконечности. Это связано с зарядкой фильтрующего электролитического конденсатора от омметра и свидетельствует о том, что конденсатор исправный. Если поменять местами щупы, то будет наблюдаться аналогичная картина. Если сопротивление велико и не изменяется, то возможно в обрыве находится конденсатор.

Сопротивление меньше допустимого свидетельствует о наличии короткого замыкания, которое может быть вызвано пробоем изоляции в электролитическом конденсаторе или выпрямляющего диода. Для определения неисправной детали придется вскрыть блок питания и отпаять от схемы один конец фильтрующего дросселя этой цепи. Далее проверить сопротивление до и после дросселя. Если после него, то замыкание в конденсаторе, проводах, между дорожками печатной платы, а если до него, то пробит выпрямительный диод.

Поиск неисправности БП внешним осмотром

Первоначально следует внимательно осмотреть все детали, обратив особое внимание на целостность геометрии электролитических конденсаторов. Как правило, из-за тяжелого температурного режима электролитические конденсаторы, выходят из строя чаще всего. Около 50% отказов блоков питания связано именно с неисправностью конденсаторов. Зачастую вздутие конденсаторов является следствием плохой работы кулера. Смазка подшипников кулера вырабатывается и обороты падают. Эффективность охлаждения деталей блока питания снижается, и они перегреваются. Поэтому при первых признаках неисправности кулера блока питания, обычно появляется дополнительный акустический шум, нужно почистить от пыли и смазать кулер.

Если корпус конденсатора вздулся или видны следы вытекшего электролита, то отказ конденсатора очевиден и его следует заменить исправным. Вздувается конденсатор в случае пробоя изоляции. Но бывает, внешних признаков отказа нет, а уровень пульсаций выходного напряжения большей. В таких случаях конденсатор неисправен по причине отсутствия контакта между его выводом и обкладки внутри него, как говорят, конденсатор в обрыве. Проверить конденсатор на обрыв можно с помощью любого тестера в режиме измерения сопротивления. Технология проверки конденсаторов представлена в статье сайта «Измерение сопротивления» .

Далее осматриваются остальные элементы, предохранитель, резисторы и полупроводниковые приборы. В предохранителе внутри вдоль по центру должна проходить тонкая металлическая проволочка, иногда с утолщением в середине. Если проволочки не видно, то, скорее всего она перегорела. Для точной проверки предохранителя нужно его прозвонить омметром . Если предохранитель перегорел, то его нужно заменить новым или отремонтировать . Прежде, чем производить замену, для проверки блока питания можно перегоревший предохранитель не выпаивать из платы, а припаять к его выводам жилку медного провода диаметром 0,18 мм. Если при включении блока питания в сеть проводок не перегорит, то тогда уже есть смысл заменять предохранитель исправным.

Как проверить исправность БП замыканием контактов PG и GND

Если материнскую плату можно проверить только подключив ее к заведомо исправному БП, то блок питания можно проверить отдельно с помощью блока нагрузок или запустить с помощью соединения контактов +5 В PG и GND между собой.

От блока питания на материнскую плату питающие напряжения подаются с помощью 20 или 24 контактного разъема и 4 или 6 контактного. Для надежности разъемы имеют защелки. Для того, чтобы вынуть разъемы из материнской платы нужно пальцем нажать наверх защелки одновременно, прилагая довольно большое усилие, покачивая из стороны в сторону, вытащить ответную часть.

Далее нужно закоротить между собой, отрезком провода, можно и металлической канцелярской скрепкой, два вывода в разъеме, снятой с материнской платы. Провода расположены со стороны защелки. На фотографиях место установки перемычки обозначено желтым цветом.

Если разъем имеет 20 контактов 14 (провод зеленого цвета, в некоторых блоках питания может быть серый , POWER ON) и вывод 15 (провод черного цвета, GND).

Если разъем имеет 24 контакта , то соединять между собой нужно вывод 16 (зеленого зеленого , в некоторых блоках питания провод может быть серого цвета, POWER ON) и вывод 17 (черный провод GND).

Если крыльчатка в кулере блока питания завращается, то блок питания АТХ можно считать работоспособным, и, следовательно, причина неработящего компьютера находится в других блоках. Но такая проверка не гарантирует стабильную работу компьютера в целом, так как отклонения выходных напряжений могут быть больше допустимых.

Проверка БП компьютера
измерением напряжений и уровня пульсаций

После ремонта БП или в случае нестабильной работы компьютера для полной уверенности в исправности блока питания, необходимо его подключить к блоку нагрузок и измерять уровень выходных напряжений и размах пульсаций. Отклонение величин напряжений и размахов пульсаций на выходе блока питания не должны превышать значений, приведенных в таблице.

Можно обойтись и без блока нагрузок измеряв напряжение и уровннь пульсаций непосредственно на выводах разъемов БП в работающем компьютере.

Таблица выходных напряжений и размаха пульсаций БП АТХ
Выходное напряжение, В +3,3 +5,0 +12,0 -12,0 +5,0 SB +5,0 PG GND
Цвет провода оранжевый красный желтый синий фиолетовый серый черный
Допустимое отклонение, % ±5 ±5 ±5 ±10 ±5
Допустимое минимальное напряжение +3,14 +4,75 +11,40 -10,80 +4,75 +3,00
Допустимое максимальное напряжение +3,46 +5,25 +12,60 -13,20 +5,25 +6,00
Размах пульсации не более, мВ 50 50 120 120 120 120

При измерении напряжений мультиметром «минусовой» конец щупа подсоединяется к черному проводу (общему), а «плюсовой» к нужным контактам разъема.

Напряжение +5 В SB (Stand-by), фиолетовый провод – вырабатывает встроенный в БП самостоятельный маломощный источник питания выполненный на одном полевом транзисторе и трансформаторе. Это напряжение обеспечивает работу компьютера в дежурном режиме и служит только для запуска БП. Когда компьютер работает, то наличие или отсутствие напряжения +5 В SB роли не играет. Благодаря +5 В SB компьютер можно запустить нажатием кнопки «Пуск» на системном блоке или дистанционно, например, с Блока бесперебойного питания в случае продолжительного отсутствия питающего напряжения 220 В.

Напряжение +5 В PG (Power Good) – появляется на сером проводе БП через 0,1-0,5 секунд в случае его исправности после самотестирования и служит разрешающим сигналом для работы материнской платы.

Напряжение минус 12 В (провод синего цвета) необходимо только для питания интерфейса RS-232, который в современные компьютерах отсутствует. Поэтому в блоках питания последних моделей этого напряжения может не быть.

Как заменить предохранитель в БП компьютера

Обычно в компьютерных блоках питания устанавливается трубчатый стеклянный плавкий предохранитель, рассчитанный на ток защиты 6,3 А. Для надежности и компактности предохранитель впаивают непосредственно в печатную плату. Для этого применяются специальные предохранители, имеющие выводы для запайки. Предохранитель обычно устанавливают в горизонтальном положении рядом с сетевым фильтром и его легко обнаружить по внешнему виду.

Но иногда встречаются блоки питания, в которых предохранитель установлен в вертикальном положении и на него надета термоусаживаемая трубка, как на фотографии выше. В результате обнаружить его затруднительно. Но помогает надпись, нанесенная на печатной плате рядом с предохранителем: F1 – так обозначается предохранитель на электрических схемах. Рядом с предохранителем может быть также указан ток, на который он рассчитан, на представленной плате указан ток 6,3 А.

При ремонте блока питания и проверке вертикально установленного предохранителя с помощью мультиметра был обнаружен его обрыв. После выпаивания предохранителя и снятия термоусаживаемой трубки стало очевидно, что он перегорел. Стеклянная трубка изнутри вся была покрыта черным налетом от перегоревшей проволоки.

Предохранители с проволочными выводами встречается редко, но их можно с успехом заменить обычными 6,3 амперными, припаяв к чашечкам с торцов одножильные кусочки медного провода диаметром 0,5-0,7 мм.

Останется только запаять подготовленный предохранитель в печатную плату блока питания и проверить его на работоспособность.

Если при включении блока питания предохранитель сгорел повторно, то значит, имеет место отказ других радиоэлементов, обычно пробой переходов в ключевых транзисторах. Ремонтировать блок питания с такой неисправностью требует высокой квалификации и экономически не целесообразен. Замена предохранителя, рассчитанного на больший ток защиты, чем 6,3 А не приведет к положительному результату. Предохранитель все равно перегорит.

Поиск в БП неисправных электролитических конденсаторов

Очень часто отказ блока питания, и как результат нестабильная работа компьютера в целом, происходит по причине вздутия корпусов электролитических конденсаторов. Для защиты от взрыва, на торце электролитических конденсаторов делаются надсечки. При возрастании давления внутри конденсатора происходит вздутие или разрыв корпуса в месте надсечки и по этому признаку легко найти отказавший конденсатор. Основной причиной выхода из строя конденсаторов является их перегрев из-за неисправности кулера или превышения допустимого напряжения.

На фотографии видно, что у конденсатора, находящегося с левой стороны, торец плоский, а у правого – вздутый, со следами подтекшего электролита. Такой конденсатор вышел из строя и подлежит замене. В блоке питания обычно выходят из строя электролитические конденсаторы по шине питания +5 В, так как устанавливаются с малым запасом по напряжению, всего на 6,3 В. Встречал случаи, когда все конденсаторы в блоке питания по цепи +5 В были вздутые.

При замене конденсаторов по цепи питания 5 В рекомендую устанавливаю конденсаторы, которые рассчитаны на напряжение не мене, чем на 10 В. Чем на большее напряжение рассчитан конденсатор, тем лучше, главное, чтобы по габаритам вписался в место установки. В случае, если конденсатор с большим напряжение не вмещается из-за размеров, можно установить конденсатор меньшей емкости, но рассчитанный на большее напряжение. Все равно емкость установленных на заводе конденсаторов имеет большей запас и такая замена не ухудшит работу блока питания и компьютера в целом.


Нет смысла заменять электролитические конденсаторы в блоке питания, если они все вспучились. Это значит, что вышла из строя схема стабилизации выходного напряжения, и на конденсаторы было подано напряжение, превышающее допустимое. Такой блок питания можно отремонтировать, только имея профессиональное образование и измерительные приборы, но экономически такой ремонт не целесообразен.

Главное при ремонте БП не забывать, что электролитические конденсаторы имеют полярность. Со стороны отрицательного вывода на корпусе конденсатора имеется маркировка, в виде широкой светлой вертикальной полосы, как показано на фото выше. На печатной плате отверстие для отрицательного вывода конденсатора расположено в зоне маркировки белого (черного) полукруга или отверстие для положительного вывода обозначается знаком «+».

Проверка дросселя групповой стабилизации БП АТХ

Если из системного блока компьютера вдруг запахло гарью, то одной из причин может быть перегрев дросселя групповой стабилизации в БП или подгоревшая обмотка одного из кулеров. При этом компьютер обычно продолжает нормально работать. Если после вскрытия системного блока и осмотра все кулеры вращаются, то значит, неисправен дроссель. Компьютер необходимо сразу выключить и заняться ремонтом.


На фотографии показан БП компьютера со снятой крышкой, в центре которой виден дроссель, покрытый изоляцией зеленого цвета, подгоревшей сверху. Когда я подключил этот БП к нагрузке и подал на него питающее напряжение, то через пару минут из дросселя пошла тонкая струйка дыма. Проверка показала, что все выходные напряжения в допуске и размах пульсаций не превышает допустимый.

Через дроссель проходит ток всех питающих компьютер напряжений и очевидно, что произошло нарушение изоляции проводов обмоток вследствие чего, они закоротили между собой.

Обмотки можно перемотать на этот же сердечник, но в результате сильного нагрева магнитодиэлектрик сердечника может потерять добротность, в результате из-за больших токов Фуко будет нагреваться даже при целых обмотках. Поэтому рекомендую установить новый дроссель. Если аналога нет, то нужно посчитать витки обмоток, сматывая их на сгоревшем дросселе, и намотать изолированным проводом такого же сечения на новом сердечнике. При этом нужно соблюдать направление обмоток.

Проверка других элементов БП

Резисторы и простые конденсаторы не должны иметь потемнений и нагаров. Корпуса полупроводниковых приборов должны быть целыми, без сколов и трещин. При самостоятельном ремонте целесообразно выполнить замену только элементов, отображенных на структурной схеме. Если потемнела краска на резисторе, или развалился транзистор, то менять их бессмысленно, так как, скорее всего это следствие выхода из строя других элементов, которые без приборов не обнаружить. Потемневший корпус резистора не всегда свидетельствует о его неисправности. Вполне возможно просто потемнела только краска, а сопротивление резистора в норме.

Блок питания в компьютере (БП) – это самостоятельное импульсное электронное устройство, предназначенное для преобразования напряжения переменного тока в ряд постоянных напряжений (+3,3 / +5 / +12 и -12) для питания материнской платы, видеокарты, винчестера и других блоков компьютера.

Прежде, чем приступать к ремонту блока питания компьютера необходимо убедиться в его неисправности, так как невозможность запуска компьютера может быть обусловлена другими причинами .

Фотография внешнего вида классического блока питания АТХ стационарного компьютера (десктопа).

Где находится БП в системном блоке и как его разобрать

Чтобы получить доступ к БП компьютера необходимо сначала снять с системного блока левую боковую стенку, открутив два винта на задней стенке со стороны расположения разъемов.

Для извлечения блока питания из корпуса системного блока необходимо открутить четыре винта, помеченных на фото. Для проведения внешнего осмотра БП достаточно отсоединить от блоков компьютера только те провода, которые мешают для установки БП на край корпуса системного блока.

Расположив блок питания на углу системного блока, нужно открутить четыре винта, находящиеся сверху, на фото розового цвета. Часто один или два винта спрятаны под наклейкой, и чтобы найти винт, ее нужно отклеить или проткнуть жалом отвертки. По бокам тоже бывают наклейки, мешающие снять крышку, их нужно прорезать по линии сопряжения деталей корпуса БП.


После того, как крышка с БП снята обязательно удаляется пылесосом вся пыль. Она является одной из главных причин отказа радиодеталей, так как, покрывая их толстым слоем, снижает теплоотдачу от деталей, они перегреваются и, работая в тяжелых условиях, быстрее выходят из строя.

Для надежной работы компьютера удалять пыль из системного блока и БП, а также проверять работу кулеров необходимо не реже одного раза в год.

Структурная схема БП компьютера АТХ

Блок питания компьютера является довольно сложным электронным устройством и для его ремонта требуются глубокие знания по радиотехнике и наличие дорогостоящих приборов, но, тем не менее, 80% отказов можно устранить самостоятельно, владея навыками пайки, работы с отверткой и зная структурную схему источника питания.

Практически все БП компьютеров изготовлены по ниже приведенной структурной схеме. Электронные компоненты на схеме я привел только те, которые чаще всего выходят из строя, и доступны для самостоятельной замены непрофессионалам. При ремонте блока питания АТХ обязательно понадобится цветовая маркировка выходящих из него проводов.


Питающее напряжение с помощью сетевого шнура подается через разъемное соединение на плату блока питания. Первым элементом защиты является предохранитель Пр1 обычно стоит на 5 А. Но в зависимости от мощности источника может быть и другого номинала. Конденсаторы С1-С4 и дроссель L1 образуют фильтр, который служит для подавления синфазных и дифференциальных помех, которые возникают в результате работы самого блока питания и могут приходить из сети.

Сетевые фильтры, собранные по такой схеме, устанавливают в обязательном порядке во всех изделиях, в которых блок питания выполнен без силового трансформатора, в телевизорах, видеомагнитофонах, принтерах, сканерах и др. Максимальная эффективность работы фильтра возможна только при подключении к сети с заземляющим проводом. К сожалению, в дешевых китайских источниках питания компьютеров элементы фильтра зачастую отсутствуют.

Вот тому пример, конденсаторы не установлены, а вместо дросселя запаяны перемычки. Если Вы будете ремонтировать блок питания и обнаружите отсутствие элементов фильтра, то желательно их установить.

Вот фотография качественного БП компьютера, как видно, на плате установлены фильтрующие конденсаторы и помехоподавляющий дроссель.

Для защиты схемы БП от скачков питающего напряжения в дорогих моделях устанавливаются варисторы (Z1-Z3), на фото с правой стороны синего цвета. Принцип работы их простой. При нормальном напряжении в сети, сопротивление варистора очень большое и не влияет на работу схемы. В случае повышении напряжения в сети выше допустимого уровня, сопротивление варистора резко уменьшается, что ведет к перегоранию предохранителя, а не к выходу из строя дорогостоящей электроники.

Чтобы отремонтировать отказавший блок по причине перенапряжения, достаточно будет просто заменить варистор и предохранитель. Если варистора под руками нет, то можно обойтись только заменой предохранителя, компьютер будет работать нормально. Но при первой возможности, чтобы не рисковать, нужно в плату установить варистор.

В некоторых моделях блоков питания предусмотрена возможность переключения для работы при напряжении питающей сети 115 В, в этом случае контакты переключателя SW1 должны быть замкнуты.

Для плавного заряда электролитических конденсаторов С5-С6, включенных сразу после выпрямительного моста VD1-VD4, иногда устанавливают термистор RT с отрицательным ТКС. В холодном состоянии сопротивление термистора составляет единицы Ом, при прохождении через него тока, термистор разогревается, и сопротивление его уменьшается в 20-50 раз.

Для возможности включения компьютера дистанционно, в блоке питания имеется самостоятельный, дополнительный маломощный источник питания, который всегда включен, даже если компьютер выключен, но электрическая вилка не вынута из розетки. Он формирует напряжение +5 B_SB и построен по схеме трансформаторного автоколебательного блокинг-генератора на одном транзисторе, запитанного от выпрямленного напряжения диодами VD1-VD4. Это один из самых не надежных узлов блока питания и ремонтировать его сложно.

Необходимые для работы материнской платы и других устройств системного блока напряжения при выходе из блока выработки напряжений фильтруются от помех дросселями и электролитическими конденсаторами и затем посредством проводов с разъемами подаются к источникам потребления. Кулер, который охлаждает сам блок питания, запитывается, в старых моделях БП от напряжения минус 12 В, в современных от напряжения +12 В.

Ремонт БП компьютера АТХ

Внимание! Во избежание вывода компьютера из строя расстыковка и подключение разъемов блока питания и других узлов внутри системного блока необходимо выполнять только после полного отключения компьютера от питающей сети (вынуть вилку из розетки или выключить выключатель в «Пилоте»).

Первое, что необходимо сделать, это проверить наличие напряжения в розетке и исправность удлинителя типа «Пилот» по свечению клавиши его выключателя. Далее нужно проверить, что шнур питания компьютера надежно вставлен в «Пилот» и системный блок и включен выключатель (при его наличии) на задней стенке системного блока.

Как найти неисправность БП нажимая кнопку «Пуск»

Если питание на компьютер подается, то на следующем шаге нужно глядя на кулер блока питания (виден за решеткой на задней стенке системного блока) нажать кнопку «Пуск» компьютера. Если лопасти кулера, хоть немного сдвинуться, значит, исправны фильтр, предохранитель, диодный мост и конденсаторы левой части структурной схемы, а также самостоятельный маломощный источник питания +5 B_SB.

В некоторых моделях БП кулер находится на плоской стороне и чтобы его увидеть, нужно снять левую боковую стенку системного блока.

Поворот на маленький угол и остановка крыльчатки кулера при нажатии на кнопку «Пуск» свидетельствует о том, что на мгновенье на выходе БП появляются выходные напряжения, после чего срабатывает защита, останавливающая работу БП. Защита настроена таким образом, что если величина тока по одному из выходных напряжений превысит заданный порог, то отключаются все напряжения.

Причиной перегрузки обычно является короткое замыкание в низковольтных цепях самого БП или в одном из блоков компьютера. Короткое замыкание обычно появляется при пробое в полупроводниковых приборах или изоляции в конденсаторах.

Для определения узла, в котором возникло короткое замыкание нужно отсоединить все разъемы БП от блоков компьютера, оставив только подключенные к материнской плате. После чего подключить компьютер к питающей сети и нажать кнопку «Пуск». Если кулер в БП завращался, значит, неисправен один из отключенных узлов. Для определения неисправного узла нужно их последовательно подключать к блоку питания.

Если БП, подключенный только к материнской плате не заработал, следует продолжить поиск неисправности и определить, какое из этих устройств неисправно.

Проверка БП компьютера
измерением величины сопротивления выходных цепей

При ремонте БП некоторые виды его неисправности можно определить путем измерения омметром величины сопротивления между общим проводом GND черного цвета и остальными контактами выходных разъемов.

Перед началом измерений БП должен быть отключен от питающей сети, и все его разъемы отсоединены от узлов системного блока. Мультиметр или тестер нужно включить в режим измерения сопротивления и выбрать предел 200 Ом. Общий провод прибора подключить к контакту разъема, к которому подходит черный провод. Концом второго щупа по очереди прикасаются к контактам, в соответствии с таблицей.

В таблице приведены обобщенные данные, полученные в результате измерения величины сопротивления выходных цепей 20 исправных БП компьютеров разных мощностей, производителей и годов выпуска.

Для возможности подключения БП для проверки без нагрузки внутри блока на некоторых выходах устанавливают нагрузочные резисторы, номинал которых зависит от мощности блока питания и решения производителя. Поэтому измеренное сопротивление может колебаться в большом диапазоне, но не должно быть ниже допустимого.

Если нагрузочный резистор в цепи не установлен, то показания омметра будут изменяться от малой величины до бесконечности. Это связано с зарядкой фильтрующего электролитического конденсатора от омметра и свидетельствует о том, что конденсатор исправный. Если поменять местами щупы, то будет наблюдаться аналогичная картина. Если сопротивление велико и не изменяется, то возможно в обрыве находится конденсатор.

Сопротивление меньше допустимого свидетельствует о наличии короткого замыкания, которое может быть вызвано пробоем изоляции в электролитическом конденсаторе или выпрямляющего диода. Для определения неисправной детали придется вскрыть блок питания и отпаять от схемы один конец фильтрующего дросселя этой цепи. Далее проверить сопротивление до и после дросселя. Если после него, то замыкание в конденсаторе, проводах, между дорожками печатной платы, а если до него, то пробит выпрямительный диод.

Поиск неисправности БП внешним осмотром

Первоначально следует внимательно осмотреть все детали, обратив особое внимание на целостность геометрии электролитических конденсаторов. Как правило, из-за тяжелого температурного режима электролитические конденсаторы, выходят из строя чаще всего. Около 50% отказов блоков питания связано именно с неисправностью конденсаторов. Зачастую вздутие конденсаторов является следствием плохой работы кулера. Смазка подшипников кулера вырабатывается и обороты падают. Эффективность охлаждения деталей блока питания снижается, и они перегреваются. Поэтому при первых признаках неисправности кулера блока питания, обычно появляется дополнительный акустический шум, нужно почистить от пыли и смазать кулер.

Если корпус конденсатора вздулся или видны следы вытекшего электролита, то отказ конденсатора очевиден и его следует заменить исправным. Вздувается конденсатор в случае пробоя изоляции. Но бывает, внешних признаков отказа нет, а уровень пульсаций выходного напряжения большей. В таких случаях конденсатор неисправен по причине отсутствия контакта между его выводом и обкладки внутри него, как говорят, конденсатор в обрыве. Проверить конденсатор на обрыв можно с помощью любого тестера в режиме измерения сопротивления. Технология проверки конденсаторов представлена в статье сайта «Измерение сопротивления» .

Далее осматриваются остальные элементы, предохранитель, резисторы и полупроводниковые приборы. В предохранителе внутри вдоль по центру должна проходить тонкая металлическая проволочка, иногда с утолщением в середине. Если проволочки не видно, то, скорее всего она перегорела. Для точной проверки предохранителя нужно его прозвонить омметром . Если предохранитель перегорел, то его нужно заменить новым или отремонтировать . Прежде, чем производить замену, для проверки блока питания можно перегоревший предохранитель не выпаивать из платы, а припаять к его выводам жилку медного провода диаметром 0,18 мм. Если при включении блока питания в сеть проводок не перегорит, то тогда уже есть смысл заменять предохранитель исправным.

Как проверить исправность БП замыканием контактов PG и GND

Если материнскую плату можно проверить только подключив ее к заведомо исправному БП, то блок питания можно проверить отдельно с помощью блока нагрузок или запустить с помощью соединения контактов +5 В PG и GND между собой.

От блока питания на материнскую плату питающие напряжения подаются с помощью 20 или 24 контактного разъема и 4 или 6 контактного. Для надежности разъемы имеют защелки. Для того, чтобы вынуть разъемы из материнской платы нужно пальцем нажать наверх защелки одновременно, прилагая довольно большое усилие, покачивая из стороны в сторону, вытащить ответную часть.

Далее нужно закоротить между собой, отрезком провода, можно и металлической канцелярской скрепкой, два вывода в разъеме, снятой с материнской платы. Провода расположены со стороны защелки. На фотографиях место установки перемычки обозначено желтым цветом.

Если разъем имеет 20 контактов 14 (провод зеленого цвета, в некоторых блоках питания может быть серый , POWER ON) и вывод 15 (провод черного цвета, GND).

Если разъем имеет 24 контакта , то соединять между собой нужно вывод 16 (зеленого зеленого , в некоторых блоках питания провод может быть серого цвета, POWER ON) и вывод 17 (черный провод GND).

Если крыльчатка в кулере блока питания завращается, то блок питания АТХ можно считать работоспособным, и, следовательно, причина неработящего компьютера находится в других блоках. Но такая проверка не гарантирует стабильную работу компьютера в целом, так как отклонения выходных напряжений могут быть больше допустимых.

Проверка БП компьютера
измерением напряжений и уровня пульсаций

После ремонта БП или в случае нестабильной работы компьютера для полной уверенности в исправности блока питания, необходимо его подключить к блоку нагрузок и измерять уровень выходных напряжений и размах пульсаций. Отклонение величин напряжений и размахов пульсаций на выходе блока питания не должны превышать значений, приведенных в таблице.

Можно обойтись и без блока нагрузок измеряв напряжение и уровннь пульсаций непосредственно на выводах разъемов БП в работающем компьютере.

Таблица выходных напряжений и размаха пульсаций БП АТХ
Выходное напряжение, В +3,3 +5,0 +12,0 -12,0 +5,0 SB +5,0 PG GND
Цвет провода оранжевый красный желтый синий фиолетовый серый черный
Допустимое отклонение, % ±5 ±5 ±5 ±10 ±5
Допустимое минимальное напряжение +3,14 +4,75 +11,40 -10,80 +4,75 +3,00
Допустимое максимальное напряжение +3,46 +5,25 +12,60 -13,20 +5,25 +6,00
Размах пульсации не более, мВ 50 50 120 120 120 120

При измерении напряжений мультиметром «минусовой» конец щупа подсоединяется к черному проводу (общему), а «плюсовой» к нужным контактам разъема.

Напряжение +5 В SB (Stand-by), фиолетовый провод – вырабатывает встроенный в БП самостоятельный маломощный источник питания выполненный на одном полевом транзисторе и трансформаторе. Это напряжение обеспечивает работу компьютера в дежурном режиме и служит только для запуска БП. Когда компьютер работает, то наличие или отсутствие напряжения +5 В SB роли не играет. Благодаря +5 В SB компьютер можно запустить нажатием кнопки «Пуск» на системном блоке или дистанционно, например, с Блока бесперебойного питания в случае продолжительного отсутствия питающего напряжения 220 В.

Напряжение +5 В PG (Power Good) – появляется на сером проводе БП через 0,1-0,5 секунд в случае его исправности после самотестирования и служит разрешающим сигналом для работы материнской платы.

Напряжение минус 12 В (провод синего цвета) необходимо только для питания интерфейса RS-232, который в современные компьютерах отсутствует. Поэтому в блоках питания последних моделей этого напряжения может не быть.

Как заменить предохранитель в БП компьютера

Обычно в компьютерных блоках питания устанавливается трубчатый стеклянный плавкий предохранитель, рассчитанный на ток защиты 6,3 А. Для надежности и компактности предохранитель впаивают непосредственно в печатную плату. Для этого применяются специальные предохранители, имеющие выводы для запайки. Предохранитель обычно устанавливают в горизонтальном положении рядом с сетевым фильтром и его легко обнаружить по внешнему виду.

Но иногда встречаются блоки питания, в которых предохранитель установлен в вертикальном положении и на него надета термоусаживаемая трубка, как на фотографии выше. В результате обнаружить его затруднительно. Но помогает надпись, нанесенная на печатной плате рядом с предохранителем: F1 – так обозначается предохранитель на электрических схемах. Рядом с предохранителем может быть также указан ток, на который он рассчитан, на представленной плате указан ток 6,3 А.

При ремонте блока питания и проверке вертикально установленного предохранителя с помощью мультиметра был обнаружен его обрыв. После выпаивания предохранителя и снятия термоусаживаемой трубки стало очевидно, что он перегорел. Стеклянная трубка изнутри вся была покрыта черным налетом от перегоревшей проволоки.

Предохранители с проволочными выводами встречается редко, но их можно с успехом заменить обычными 6,3 амперными, припаяв к чашечкам с торцов одножильные кусочки медного провода диаметром 0,5-0,7 мм.

Останется только запаять подготовленный предохранитель в печатную плату блока питания и проверить его на работоспособность.

Если при включении блока питания предохранитель сгорел повторно, то значит, имеет место отказ других радиоэлементов, обычно пробой переходов в ключевых транзисторах. Ремонтировать блок питания с такой неисправностью требует высокой квалификации и экономически не целесообразен. Замена предохранителя, рассчитанного на больший ток защиты, чем 6,3 А не приведет к положительному результату. Предохранитель все равно перегорит.

Поиск в БП неисправных электролитических конденсаторов

Очень часто отказ блока питания, и как результат нестабильная работа компьютера в целом, происходит по причине вздутия корпусов электролитических конденсаторов. Для защиты от взрыва, на торце электролитических конденсаторов делаются надсечки. При возрастании давления внутри конденсатора происходит вздутие или разрыв корпуса в месте надсечки и по этому признаку легко найти отказавший конденсатор. Основной причиной выхода из строя конденсаторов является их перегрев из-за неисправности кулера или превышения допустимого напряжения.

На фотографии видно, что у конденсатора, находящегося с левой стороны, торец плоский, а у правого – вздутый, со следами подтекшего электролита. Такой конденсатор вышел из строя и подлежит замене. В блоке питания обычно выходят из строя электролитические конденсаторы по шине питания +5 В, так как устанавливаются с малым запасом по напряжению, всего на 6,3 В. Встречал случаи, когда все конденсаторы в блоке питания по цепи +5 В были вздутые.

При замене конденсаторов по цепи питания 5 В рекомендую устанавливаю конденсаторы, которые рассчитаны на напряжение не мене, чем на 10 В. Чем на большее напряжение рассчитан конденсатор, тем лучше, главное, чтобы по габаритам вписался в место установки. В случае, если конденсатор с большим напряжение не вмещается из-за размеров, можно установить конденсатор меньшей емкости, но рассчитанный на большее напряжение. Все равно емкость установленных на заводе конденсаторов имеет большей запас и такая замена не ухудшит работу блока питания и компьютера в целом.


Нет смысла заменять электролитические конденсаторы в блоке питания, если они все вспучились. Это значит, что вышла из строя схема стабилизации выходного напряжения, и на конденсаторы было подано напряжение, превышающее допустимое. Такой блок питания можно отремонтировать, только имея профессиональное образование и измерительные приборы, но экономически такой ремонт не целесообразен.

Главное при ремонте БП не забывать, что электролитические конденсаторы имеют полярность. Со стороны отрицательного вывода на корпусе конденсатора имеется маркировка, в виде широкой светлой вертикальной полосы, как показано на фото выше. На печатной плате отверстие для отрицательного вывода конденсатора расположено в зоне маркировки белого (черного) полукруга или отверстие для положительного вывода обозначается знаком «+».

Проверка дросселя групповой стабилизации БП АТХ

Если из системного блока компьютера вдруг запахло гарью, то одной из причин может быть перегрев дросселя групповой стабилизации в БП или подгоревшая обмотка одного из кулеров. При этом компьютер обычно продолжает нормально работать. Если после вскрытия системного блока и осмотра все кулеры вращаются, то значит, неисправен дроссель. Компьютер необходимо сразу выключить и заняться ремонтом.


На фотографии показан БП компьютера со снятой крышкой, в центре которой виден дроссель, покрытый изоляцией зеленого цвета, подгоревшей сверху. Когда я подключил этот БП к нагрузке и подал на него питающее напряжение, то через пару минут из дросселя пошла тонкая струйка дыма. Проверка показала, что все выходные напряжения в допуске и размах пульсаций не превышает допустимый.

Через дроссель проходит ток всех питающих компьютер напряжений и очевидно, что произошло нарушение изоляции проводов обмоток вследствие чего, они закоротили между собой.

Обмотки можно перемотать на этот же сердечник, но в результате сильного нагрева магнитодиэлектрик сердечника может потерять добротность, в результате из-за больших токов Фуко будет нагреваться даже при целых обмотках. Поэтому рекомендую установить новый дроссель. Если аналога нет, то нужно посчитать витки обмоток, сматывая их на сгоревшем дросселе, и намотать изолированным проводом такого же сечения на новом сердечнике. При этом нужно соблюдать направление обмоток.

Проверка других элементов БП

Резисторы и простые конденсаторы не должны иметь потемнений и нагаров. Корпуса полупроводниковых приборов должны быть целыми, без сколов и трещин. При самостоятельном ремонте целесообразно выполнить замену только элементов, отображенных на структурной схеме. Если потемнела краска на резисторе, или развалился транзистор, то менять их бессмысленно, так как, скорее всего это следствие выхода из строя других элементов, которые без приборов не обнаружить. Потемневший корпус резистора не всегда свидетельствует о его неисправности. Вполне возможно просто потемнела только краска, а сопротивление резистора в норме.

просмотров