Какое сопротивление вторичной обмотки трансформатора. Как мультиметром проверить импульсный трансформатор

Какое сопротивление вторичной обмотки трансформатора. Как мультиметром проверить импульсный трансформатор

Прежде чем подключать трансформатор к сети,нужно определить первичную обмотку трансформатора, прозвонить его первичные и вторичные обмотки омметром.

У понижающих трансформаторов сопротивление сетевой обмотки намного больше, чем сопротивление вторичных обмоток и может отличаться в сто раз.

несколько первичных обмоток

Первичных (сетевых) обмоток может быть несколько, либо единственная обмотка может иметь отводы, если трансформатор универсальный и рассчитан на использование при разных напряжениях сети.

В двух каркасных трансформаторах на стержневых магнитопроводах, первичные обмотки распределены по обоим каркасам.

защищен предохранителем

При пробном включении трансформаторов можно воспользоваться приведённой схемой. При неправильном , предохранитель FU защитит сеть от короткого замыкания, а трансформатор от повреждения.

Видео: Простой способ диагностики силового трансформатор

Когда неизвестен тип силового трансформатора, тем более мы не знаем его паспортных данных, на помощь приходит обыкновенный стрелочный тестер и не хитрое приспособление в лице лампы накаливания.

Как подобрать предохранитель для трансформатора

Рассчитываем ток предохранителя обычным способом:

I – ток, на который рассчитан предохранитель (Ампер),
P – габаритная мощность трансформатора (Ватт),
U – напряжение сети (~220 Вольт).

35 / 220 = 0,16 Ампер

Ближайшее значение – 0,25 Ампер.

определение первичного напряжения трансформатора

Схема измерения тока Холостого Хода (ХХ) трансформатора. Ток ХХ трансформатора обычно замеряют, чтобы исключить наличие короткозамкнутых витков или убедится в правильности подключения первичной обмотки.

При замере тока ХХ, нужно плавно поднимать напряжение питания. При этом ток должен плавно возрастать. Когда напряжение превысит 230 Вольт, ток обычно начинает возрастать более резко. Если ток начинает резко возрастать при напряжении значительно меньшем, чем 220 Вольт, значит, либо Вы неправильно выбрали первичную обмотку, либо она неисправна.

Мощность (Вт) Ток ХХ (мА)
5 — 10 10 — 200
10 -50 20 — 100
50 — 150 50 — 300
150 — 300 100 — 500
300 — 1000 200 — 1000

Ориентировочные токи ХХ трансформаторов в зависимости от мощности.
Нужно добавить, что токи ХХ трансформаторов даже одной и той же габаритной мощности могут очень сильно отличаться. Чем более высокие значения индукции заложены в расчёт, тем больше ток ХХ.

Схема подключения, при определения количества витков на вольт.

Можно подобрать готовый трансформатор из числа унифицированных типа ТН,
ТА, ТНА, ТПП и других. А если Вам необходимо намотать или перемотать
трансформатор под нужное напряжение, что тогда делать?

Тогда необходимо подобрать подходящий по мощности силовой трансформатор
от старого телевизора, к примеру, трансформатор и ему подобные.

Надо четко понимать, что чем больше количества витков в первичной обмотке тем больше её сопротивление и поэтому меньше нагрев и второе, чем толще провод, тем больше можно получить силу тока , но это зависит от размеров сердечника — сможете ли разместить обмотку.

Что делаем далее, если неизвестно количество витков на вольт?

Для этого необходим ЛАТР, мультиметр (тестер) и прибор измеряющий переменный ток —
амперметр. Наматываем по вашему усмотрению обмотку поверх имеющейся,
диаметр провода любой, для удобства можем намотать и просто монтажным
проводом в изоляции.

Формула для расчета витков трансформатора

50/S

Сопутствующие формулы:

P=U2*I2 (мощность трансформатора)

Sсерд(см2)= √ P(ва) N=50/S

I1(a)=P/220 (ток первичной обмотки)

W1=220*N (количество витков первичной обмотки)

W2=U*N (количество витков вторичной обмотки)

D1=0,02*√i1(ma) D2=0,02*√i2(ma)
K=Sокна/(W1*s1+W2*s2)

50/S — это эмпирическая формула, где S — площадь сердечника трансформатора в см2 (ширину х толщину), считается, что она справедлива до мощности порядка 1кВт.
Измерив площадь сердечника, прикидываем сколько надо
витков намотать на 10 вольт, если это не очень трудно, не разбирая
трансформатора наматываем контрольную обмотку через свободное
пространство (щель).

Подключаем лабораторный автотрансформатор к
первичной обмотке и подаёте на неё напряжение, последовательно включаем
контрольный амперметр, постепенно повышаем напряжение ЛАТР-ом, до начала
появления тока холостого хода.

Если вы планируете намотать трансформатор с достаточно
«жёсткой» характеристикой, к примеру, это может быть усилитель мощности
передатчика в режиме SSB, телеграфном, где происходят довольно резкие
броски тока нагрузки при высоком напряжении (2500 -3000 в), например,
тогда ток холостого хода трансформатора устанавливаем порядка 10% от
максимального тока, при максимальной нагрузке трансформатора. Замерив
полученное напряжение, намотанной вторичной контрольной обмотки, делаем
расчет количества витков на вольт.

Пример: входное напряжение 220вольт, измеренное напряжение вторичной обмотки 7,8 вольта, количество витков 14.

Рассчитываем количества витков на вольт
14/7,8=1,8 витка на вольт.

Если нет под рукой амперметра, то вместо него можно использовать
вольтметр, замеряя падение напряжение на резисторе, включенного в разрыв
подачи напряжения к первичной обмотке, потом рассчитать ток из
полученных измерений.

Проверьте трансформатор визуально. Зачастую причиной поломки трансформатора является перегрев его внутренней обмотки. Если корпус трансформатора вздут или на нем видны следы пригара, не проверяйте его далее.

Определите обмотки трансформатора. На нем должны быть ясно читаемые метки. Тем не менее, всегда полезно иметь схему цепи, содержащей ваш трансформатор, чтобы выяснить, каким образом он подключен. Схему цепи можно найти в документации к изделию или на интернет-сайте производителя.

Определите вход и выход трансформатора. Первая электрическая цепь, генерирующая магнитное поле, подсоединяется к его первичной обмотке. Напряжение, подаваемое на эту обмотку, должно быть отмечено на самом трансформаторе, и его можно найти на схеме. Вторая цепь, принимающая энергию магнитного поля, подсоединяется к вторичной обмотке трансформатора. Создаваемое в этой цепи напряжение также должно быть отмечено на самом трансформаторе и на схеме.

Определите фильтрацию на выходе. Часто к вторичной обмотке трансформатора подсоединяют конденсаторы и диоды, чтобы перевести на выходе переменную мощность в постоянную. Подобная фильтрация и изменение формы сигнала не отражены на метке трансформатора. Они должны быть указаны на прилагаемой к нему схеме.

Приготовьтесь к измерению напряжения в сетях. Если необходимо, удалите крышки и панели, прикрывающие доступ к сети, содержащей трансформатор. Для измерений запаситесь цифровым мультиметром (тестером). Такой тестер можно купить в магазине электротоваров или хозяйственных товаров.

Определите вход трансформатора. Подключите входную цепь к источнику. Используя тестер в режиме AC (переменный ток), измерьте напряжение на первичной обмотке. Если оно более чем на 80 процентов ниже ожидаемой величины, может быть неисправной либо сеть первичной обмотки, либо трансформатор. В этом случае отсоедините первичную обмотку от входного контура. Если после этого напряжение на входе (но не на отключенной первичной обмотке) поднялось до ожидаемого значения, значит, неисправна первичная обмотка трансформатора. Если же напряжение не поднялось, то неисправность заключается не в трансформаторе, а во входном контуре.

Измерьте напряжение на выходе трансформатора. Если вы определили, что на выходе нет фильтрования или преобразования сигнала, выходящего со вторичной обмотки, воспользуйтесь режимом AC тестера. Если же фильтрование и преобразование сигнала есть, переключите тестер в режим DC. Если тестер не показывает ожидаемое напряжение на выходе, поврежден либо трансформатор, либо блок фильтрации и преобразования сигнала. Проверьте все составляющие этого блока отдельно. Если все они окажутся в порядке, значит, неисправен трансформатор.

Первичная обмотка трансформатора — это часть устройства, к которой подводится преобразуемый переменный ток. Определить, где первичная, а где вторичная обмотка трансформатора, важно при использовании устройств без заводской маркировки и самодельных катушек.

На самодельных трансформаторах нет обозначений первичной обмотки.

Знания о внутреннем строении и принципе действия трансформаторов имеют практическое значение для начинающих радиолюбителей и домашних мастеров. Имея информацию о типах обмоток, методах их расчета и главных отличиях, можно с большей уверенностью начинать создание систем освещения и прочих устройств.

Типы трансформаторных обмоток

В зависимости от взаиморасположения проводящих ток элементов, направления их намотки и формы сечения провода выделяют несколько типов обмоток трансформаторов:

  1. Однослойная или двухслойная цилиндрическая обмотка из прямоугольного провода. Технология ее изготовления очень проста, благодаря чему такие катушки получили широкое распространение. Обмотка имеет небольшую толщину, что уменьшает нагрев устройства. Из недостатков следует выделить небольшую прочность конструкции.
  2. Многослойная цилиндрическая обмотка является аналогом предыдущего типа, но провод расположен в несколько слоев. Окна магнитной системы при этом заполняются лучше, но появляется проблема перегрева.
  3. Цилиндрическая многослойная обмотка из провода круглого сечения обладает свойствами, близкими к предыдущим разновидностям обмоток, но к недостаткам добавляется утрата прочности по мере роста мощности.
  4. Винтовая обмотка с одним, двумя и больше ходами имеет высокую прочность, отличную изоляцию и охлаждение. По сравнению с цилиндрическими обмотками, винтовая обходится дороже в производстве.
  5. Непрерывная обмотка из провода прямоугольного сечения не перегревается, она обладает значительным запасом прочности.
  6. Многослойная обмотка из фольги устойчива к повреждениям, хорошо заполняет окно магнитной системы, но технология производства таких катушек сложная и дорогостоящая.

У трансформаторов есть шесть основных типов обмотки.

На схемах трансформаторов начало обмоток высокого напряжения обозначается большими буквами латинского алфавита (A, B, C), а такая же часть проводов низкого напряжения — строчными буквами. Противоположный конец обмотки имеет общепринятое условное обозначение, состоящее из конечных трех букв латинского алфавита — X, Y, Z для входящего напряжения и x, y, z для выходящего.

Различают обмотки и по назначению:

  • основные — к ним относятся первичная и вторичная обмотки, по которым ток подается из сети и поступает к месту потребления;
  • регулирующие — являют собой отводы, главная функция которых — изменение коэффициента трансформации напряжения;
  • вспомогательные — используются для обеспечения нужд самого трансформатора.

Автоматизированный расчет намотки трансформатора

Правильно выбрать трансформатор важно не только при проведении ремонта электрической сети, систем освещения и цепей управления. Расчет важен и для радиолюбителей, которые хотят самостоятельно изготовить катушку для конструируемого прибора.

Для этого существуют удобные программы-калькуляторы, которые обладают широким функционалом и оперируют различными методами расчета.

Специальные программы облегчат расчет траснформатора.

  • напряжение, подающееся на первичную обмотку катушки, в большинстве случаев это для домашних нужд
  • напряжение составляет 220 вольт;
  • напряжение на вторичной обмотке;
  • сила тока вторичной обмотки.

Результат расчетов представлен в виде удобной таблицы, в которой указаны такие значения, как параметры сердечника и высота стержня, сечение провода, количество витков и мощность обмоток.

Автоматизированный расчет сильно упрощает теоретическую часть процесса конструирования трансформатора, позволяя сосредоточиться на важных деталях.

Отличия первичной обмотки от вторичной

Определить тип обмотки можно по ее сопротивлению.

Определение типа обмотки может быть важным в тех случаях, когда на трансформаторе не сохранилось никаких обозначений. Как узнать, где первичная, а где вторичная обмотка? Они рассчитаны на разное напряжение. Если к сети в 220 В подключить вторичную обмотку, то устройство просто сгорит.

Главный визуальный критерий, при помощи которого можно определить тип обмотки, — толщина провода, припаянного к его выводам . Трансформатор имеет 4 выхода: два для подключения к сети, а еще два для вывода напряжения. Провода, которыми первичная обмотка соединяется с сетью, имеют небольшую толщину. Вторичная обмотка подключена проводами довольно большого поперечного сечения.

Еще один верный признак, позволяющий узнать тип обмотки, — измерение сопротивления провода. Сопротивление первичной обмотки имеет довольно высокое значение тогда, когда у вторичной оно может составлять до 1 Ома.

Вне зависимости от модели, первичная обмотка трансформатора всегда будет одна. На принципиальных схемах она обозначается римской цифрой I. Вторичных обмоток может быть несколько, их обозначение — II, III, IV, и т.д. Не стоит допускать распространенной ошибки, называя такие обмотки третичными, четвертичными и так далее. Все они имеют один ранг и называются вторичными.

Какие функции выполняет трансформатор?

Трансформаторы широко используются в зарядных устройствах.

Главная функция трансформаторов состоит в понижении или повышении напряжения подаваемого на них тока. Эти устройства находят широкое применение в высоковольтных сетях, которые доставляют электричество от места его выработки до конечного потребителя.

В современном домашнем хозяйстве трудно обойтись без трансформатора тока. Данные устройства используются во всех типах техники, начиная от холодильника и заканчивая компьютером.

Еще недавно размеры и вес бытовой техники часто определялись именно параметрами трансформатора, ведь основное правило заключалось в том, что чем выше мощность преобразователя тока, тем он больше и тяжелее. Чтобы увидеть это, достаточно просто сравнить между собой два типа зарядных устройств. Трансформаторы от старого мобильного телефона и современного смартфона или планшета. В первом случае перед нами будет небольшое, но увесистое приспособление для зарядки, которое заметно греется и часто выходит из строя. Импульсные трансформаторы отличаются бесшумной работой, компактностью и высокой надежностью. Принцип их действия заключается в том, что переменное напряжение сначала поступает на выпрямитель и преобразовывается в высокочастотные импульсы, которые подаются на небольшой трансформатор.

В условиях проведения ремонта техники дома часто возникает потребность самостоятельной намотки катушки трансформатора. Для этого используют сборные сердечники, которые состоят из отдельных пластин. Детали соединяются между собой посредством замка, образовывая жесткую конструкцию. Обмотка проводом производится при помощи самодельного устройства, которое работает по принципу коловорота.

Создавая такой трансформатор, следует помнить: чем плотнее и аккуратнее намотана проволока, тем меньше проблем будет возникать с эксплуатацией такого устройства.

Витки отделяются друг от друга одинарным слоем бумаги, промазанной клеем, а первичная обмотка отделяется от вторичной промежутком из 4-5 слоев бумаги. Такая изоляция обеспечит защиту от пробоев и короткого замыкания. Правильно собранный трансформатор гарантирует стабильность работы техники, отсутствие назойливого гула и перегревов.

Заключение по теме

Трансформаторы используются в большинстве окружающей нас техники. Знание об их внутреннем строении дает возможность при необходимости произвести их ремонт, обслуживание или замену.

Отличить первичную обмотку от вторичной бывает важно для правильного подключения устройства в сеть. Подобная проблема может возникнуть и при использовании самодельных устройств или трансформаторов без маркировки.

Непрерывная катушечная обмотка применяется только при напряжении 110 кВ и выше. При использовании в обмотке нескольких параллельных проводов транспозиция делается, как в винтовых параллельных обмотках.

Трансформатор, история применения которого насчитывает почти полтора века, все это время служит человечеству верой и правдой. Его назначение — преобразование напряжения переменного тока. Это одно из немногих устройств, КПД которого может достигать почти 100%.

Как рассчитать и намотать обмотки трансформатора, каким может быть его сердечник, каковы особенности конструкции трансформаторов различного назначения, как они работают — вопросы, которые могут заинтересовать многих. Ниже предлагаются ответы на большинство этих вопросов.

Что представляет собой трансформатор?

Вернуться к оглавлению

Немного истории

В 70-х годах XIX века русский ученый П.Н. Яблочков изобрел электродуговой источник света — «свечу Яблочкова». Первоначально источниками питания дуги служили мощные гальванические батареи, но аноды в этом случае сгорали быстрее. Тогда ученый решил использовать в качестве источника тока для своего изобретения генератор переменного тока.

В этом случае возникало другое затруднение: после того как зажигалась одна электрическая свеча, из-за уменьшения напряжения на зажимах генератора возгорание других светильников было затруднено. Задача была решена, когда для питания каждого источника света был применен свой трансформатор. Эти первые трансформаторы имели незамкнутые сердечники из пучков стальной проволоки и, как следствие, обладали низким КПД. Трансформаторы с замкнутыми сердечниками, подобные современным, появились лишь спустя 9 лет.

Вернуться к оглавлению

Как устроен и как работает трансформатор?

Рисунок 1. Схема самого простого трансформатора.

Самый простой трансформатор — это сердечник из вещества с большой магнитной проницаемостью и две намотанных на него обмотки (рис. 1а). При пропускании через первичную обмотку переменного тока силой I 1 в сердечнике возникает меняющийся магнитный поток Ф, которым пронизывается как первичная, так и вторичная обмотка.

В каждом из витков этих обмоток находится одинаковая по численному значению ЭДС индукции. Таким образом, отношения ЭДС в обмотках и витков в них одинаковы. На холостом ходу (I 2 = 0) напряжения на обмотках практически равны ЭДС индукции в них, следовательно, для напряжений также выполняется соотношение:

U 1 / U 2 ≈ N 1 / N 2, где

N 1 и N 2 — число витков в обмотках.

Отношение U 1 / U 2 называют еще коэффициентом трансформации (k). Если U 1 > U 2 , трансформатор называют повышающим (рис. 1б), при U 1 < U 2 — понижающим (рис 1в). У первого трансформатора коэффициент трансформации больше, а у второго — меньше единицы.

Один и тот же трансформатор, в зависимости от того к которой обмотке прикладывается, а с какой снимается напряжение, может быть как повышающим, так и понижающим. Вторичная обмотка необязательно одна — их может быть и несколько. Из равенства мощностей в обмотках следует, что токи в них обратно пропорциональны числу витков:

I 1 / I 2 ≈ N 2 / N 1.

Если вторичная обмотка — составная часть первичной (или первичная — вторичной), трансформатор превращается в автотрансформатор. На рис. 1г и 1д показаны схемы, соответственно, понижающего и повышающего автотрансформаторов.

Переменное магнитное поле вызывает появление в сердечнике вихревых токов, которые нагревают его, на что бесполезно тратится часть энергии. Чтобы уменьшить эти потери, сердечники набирают из отдельных, изолированных друг от друга листов специальной трансформаторной стали с малой энергией перемагничивания.

Чаще всего в современных трансформаторах используются магнитопроводы трех типов:

  1. Стержневые (П-образные), состоящие из двух стержней с обмотками и ярма, соединяющего их. Именно так обычно устроены сердечники мощных трансформаторов.
  2. Броневые (Ш-образные). Магнитопровод представляет собой ярмо, внутри которого находится стержень с обмоткой. Ярмо защищает каждую обмотку трансформатора от внешних воздействий — отсюда такое название. Чаще применяется в маломощных трансформаторах для электронных схем.
  3. Тороидальные — магнитопровод, имеющий форму тора, состоит из намотанной плотным рулоном трансформаторной ленты. Преимущества — относительно малый вес, высокий КПД, минимум помех. Недостаток — сложность намотки.

Вернуться к оглавлению

Как осуществить расчет трансформатора?

Важнейшие параметры трансформатора — номинальные значения токов и напряжений и мощности, на которые он рассчитан. Абсолютная точность при расчетах характеристик трансформатора по этим параметрам особого значения не имеет, поэтому можно ограничиться приблизительными значениями.

Очередность расчетов выглядит следующим образом:

  1. Расчет тока через вторичную обмотку с учетом потерь: I 2 = 1,5 * I 2н, где I 2н — номинальный ток в ней.
  2. Расчет мощности, снимаемой с вторичной обмотки: Р 2 = U 2 * I 2 , где U 2 — напряжение на ней. Если такая обмотка не одна, то результат — сумма их мощностей.
  3. Определение результирующей мощности: Р Т = 1,25 * P 2 при КПД порядка 80%.
  4. Расчет силы тока через первичную обмотку трансформатора: I 1 = P Т / U 1 , где U 1 — напряжение на ней.
  5. Площадь требующегося сечения магнитопровода: S = 1,3 * √P Т, где S измеряется в см 2 .
  6. Количество витков для первичной обмотки трансформатора: N 1 = 50 * U 1 / S, где S измеряется в см 2 .
  7. Количество витков для его вторичной обмотки: N 2 = 55 * U 2 / S, где S измеряется в см 2 .
  8. Диаметр проводников любой из обмоток трансформатора: d = 0,632 * √I, где I — сила тока в ней. Формула верна для медного провода.

Например, вторичная обмотка трансформатора, включаемого в сеть напряжением 220 В, должна давать ток 6,7 А при напряжении 36 В. Рассчитать параметры трансформатора.

  1. I 2 = 1,5 *6,7 А = 10 А.
  2. P 2 = 36 В * 10 А = 360 Вт.
  3. P Т = 1,25 *360 Вт = 450 Вт.
  4. I 1 = 450 Вт / 220 В ≈ 2 А.
  5. S = 1,3 * √450 (см 2) ≈ 25 см 2.
  6. N 1 = 50 * 220 / 25 = 440 витков.
  7. N 2 = 55 * 36 / 25 = 79 витков.
  8. d 1 = 0,632 * √2 (мм) = 0,9 мм, d 1 = 0,632 * √10 (мм) = 2 мм.

Если провода нужного диаметра отсутствуют, то можно заменить один толстый провод несколькими более тонкими, соединенными параллельно. Площадь сечения проводника диаметром d можно рассчитать по формуле: s = 0,8 * d 2 .

Например, нужен провод диаметром 2 мм, а имеется только проводник диаметром 1,2 мм. Площадь сечения нужного провода s = 0,8 * 4 (мм 2) = 3,2 мм 2 , площадь имеющегося, вычисленная по той же формуле, равна 1,1 мм 2 . Легко понять, что один проводник диаметром 2 мм можно заменить тремя с диаметром 1,2 мм.

Вернуться к оглавлению

Изготовление трансформатора

Процесс изготовления силового трансформатора складывается из ряда последовательных операций.

Вернуться к оглавлению

Сборка каркасов катушек для стержневого или броневого сердечника

Рисунок 2. Схема сборки каркаса для трансформатора.

Довольно удобным материалом для сборки этих каркасов являются картон или прессшпан. Еще более крепкий каркас можно изготовить из пластика. Каркас в сборе изображен на рис. 2а. Он собран из деталей, изображенных на рисунках 2б-2г. Должно быть изготовлено по два экземпляра каждой детали. Дырочки в щечках (г) предназначены для выводов.

Порядок сборки каркаса:

  • две щечки накладываются друг на друга;
  • в их окна вкладываются детали (б) и разводятся, одна вверх, вторая вниз;
  • детали (в) устанавливаются так, чтобы их выступы совпали с выемками деталей (б).

Полученный каркас достаточно прочен и уже не рассыпается. Перед намоткой катушек заранее готовятся прокладки (рис. 2д) из полосок кабельной бумаги. Полоски аккуратно надрезаются по краям на глубину несколько мм. Эти надрезы, примыкая к щеткам, будут предохранять витки очередного слоя от проваливания в область предыдущего.

Вернуться к оглавлению

Намотка катушек

Рисунок 3. Схема петли для катушки.

Перед намоткой следует заготовить отрезки гибкого многожильного провода в термостойкой изоляции для выводов и отрезки термостойкого кембрика. Намотка производится так, чтобы провод укладывался виток к витку с некоторым натяжением. Последующие витки должны прижимать предыдущие. Чтобы предотвратить проваливание витков возле щечки, желательно очередной ряд не доматывать до нее на несколько мм, заполняя свободные участки шпагатом или нитками.

После окончания намотки каждого ряда натяжение провода должно сохраняться, чтобы при наложении прокладки из кабельной бумаги намотанная часть не распускалась. Такие прокладки должны укладываться после каждого слоя.

Если наматываемый провод тонкий, то к началу и концу обмотки, а также к отводам от нее аккуратно припаиваются заготовленные отрезки гибкого многожильного провода. Место спайки изолируется. Если обмоточный провод достаточно толстый, выводы и отводы (в виде петель) делаются из этого же провода. И на выводы, и на отводы следует надеть отрезки кембрика.

Петля (рис. 3а) пропускается сквозь отверстие сложенной вдвое полоски из плотной бумаги или хлопчатобумажной ленты, которую затягивают после того, как она прижата следующими витками (рис. 2б). Пример отвода от тонкого обмоточного провода показан на рис. 2в.

Примерно так же крепят концы обмотки из толстого провода, но используется только хлопчатобумажная лента. Схема закрепления начала обмотки показана на рис. 2г, ее конца — на рис. 2д.

И несколько слов о том, как намотать обмотку тороидального трансформатора. Обычно для их намотки используются самодельные челноки, на поверхность которых наматывается достаточный запас провода. Челнок с проводом должен проходить в отверстие тороидального магнитопровода.

Рисунок 4. Схема обода колеса велосипеда.

Гораздо проще осуществить намотку с помощью приспособления, основой которого является обод колеса велосипеда (рис. 4). Обод распиливается в одном месте, продевается в отверстие магнитопровода, после чего разрезанные части аккуратно соединяются. Затем на его внешнюю поверхность наматывается обмоточный провод необходимой длины с небольшим запасом. Для удобства обод может быть подвешен своей верхней частью на забитый гвоздь, штырь или какой-нибудь другой подходящий подвес. Намотанный провод удобно зафиксировать подходящим резиновым кольцом.

Обмотка наматывается за счет вращения обода. Завершив каждый оборот, следует передвинуть на соответствующее расстояние резиновое кольцо. Витки следует укладывать аккуратно, с натяжением. Выводы и отводы можно формировать так же, как у упомянутых выше катушек. Каждый слой и обмотка обязательно разделяются слоем изоляции. Поверх последнего слоя трансформатор обматывается киперной лентой и пропитывается лаком.

Имей трансформатор две обмотки, четыре вывода, прозвонить ничего не стоит. Проблема обусловлена значительным отличием реальных конструкций. Трансформатор снабжен множеством выводов вторичной обмотки для получения нужных номиналов напряжений. Входная сторона непроста. На один магнитопровод иногда намотано два отдельных трансформатора. Как произвести оценку пригодности использования? Давайте посмотрим, как проверить трансформатор.

Проверка трансформатора китайским тестером

Не каждый трансформатор изготовлен питаться сетью 220 вольт частотой 50 Гц. В промышленности, измерительной отрасли, высшем образовании применяются другие устройства. Наблюдая неподходящие характеристики, использовать приборы в промышленных цепях будет негодной идеей. Поэтому первое, уделяем внимание маркировке. Ведется сообразно ГОСТ. Проблема появляется: каждому типу трансформаторов выпущен индивидуальный документ.

Условные обозначения силовых (ГОСТ 52719-2007) трансформаторов

  1. Логотип предприятия-производителя. На официальном сайте завода удастся почерпнуть немало полезных сведений. Проблема ограничена прекращением предприятием существования. Понимаете живость вопроса для разваливающейся страны. Вторая очередь касается поиска краткой цифровой маркировки, озадачим поисковик: Яндекс, Гугл. Велик шанс немедленного отыскания характеристик, равно как электрическая схема устройства. Дальше ничего проще, нежели прозвонить трансформатор, определить, наличие пробоя, целостности обмоток. Напоминаем, сопротивление изоляции (на магнитопровод, например) составляет не менее 20 МОм согласно существующим стандартам. Касается любых соседствующих, электрически развязанных обмоток. Прикупив китайский тестер, любители могут проделать измерения своими руками.
  2. Наименование изделия считаем ключевым фактором. Требуется понимать: различные классы предназначаются своим целям. Допустимо, конечно, использовать трансформатор входным, формируя гальваническую развязку, одновременно понимая получающийся результат. В устройствах напряжение обычно не нормируется отдельно, операция лишена смысла. Вторичная обмотка трансформатора тока подключается на соответствующую катушку прибора контроля, измерения. Напряжение при необходимости оценивается отдельно. Маркировка содержит слова «трансформатор», «автотрансформатор». Сразу разбираем смысл. Поможет Яндекс. Например, автотрансформатор отличается отсутствием гальванической развязки меж первичной, вторичной обмоткой. На деле при движении электропоездов удобно через промежутки расставить автотрансформаторы, снимать напряжение типичным методом. Траектория движения тока позволит значительно снижать потери. Расстояние меж источником и заземлением (через рельсы) снижается. Имеется немало других разновидностей трансформаторов. Определен тип, найдем ГОСТ соответствующего класса прибора, дальше двигаемся, снабженные надежной информационной поддержкой. Касательно данного класса приборов находим: маркировка ведется согласно ГОСТ 11677-75. Различен ГОСТу, согласно которому начали рассмотрение, объясняется разной областью действия. ГОСТ 11677 — международный. Следовательно, понятно: даже на один класс изделий бирку привешивают неодинаковую.
  3. Заводской номер поможет получить техническую поддержку. Точно знаем, на Тайвани, в Китае живут специалисты, знающие английский, настоятельно рекомендуем при возникновении проблем попробовать связаться. Для советских изделий информация скорее окажется бесполезной.
  4. Условное обозначение типа поможет разобрать конструктивные особенности. Например, встретим ТЗРЛ. Согласно ГОСТ 7746-2001 существуют таблицы (2 и 3), ведущие расшифровку. Что касается первой буквы, характеризует слово «трансформатор». Незадача – табличка лишена расшифровки буквы З. Сдаваться? Посещаем Яндекс, вскорости находим: З означает – «защитный». Дальше просто: буква О согласно таблице – «опорный», Л характеризует литой тип изоляции. Находим климатическое исполнение У2. Расшифровка ведется согласно ГОСТ 15150, категория размещения типа 2 ГОСТ 15150. Имея на руках сведения, несложно найти отличительные особенности трансформатора. Касается будущего размещения, взялись проверить трансформатор неспроста. Наверняка приготовлено теплое местечко, соответствующее указанным стандартам.
  5. Полезными считаем сведения, касающиеся нормативной документации. Стандарт, согласно которому изготовлен трансформатор, приведен шильдиком. Остается открыть документ, расшифровать надпись. В каждом конкретном случае могут присутствовать небольшие отклонения обозначений, разобраться поможет поисковик (Яндекс, Гугл).

  6. Дата изготовления указана мягким алюминием таблички. Информация пригодится имеющим желание обратиться в службу технической поддержки производителя.
  7. Шильдике предоставляет нарисованную электрическую схему соединений обмоток, номера выводов (цвета, другие условные обозначения). Согласно информации ничего проще, нежели отыскать неисправности трансформаторов. Даже если шильдик полустертый, постарайтесь найти табличку аналогичного прибора. Дальше допустимо перерисовать, распечатать нужную информацию. На специализированных форумах любители охотно делятся подобными сведениями. Повремените унывать. Наконец, многое почерпнем из справочников. Найдете, используя Яндекс. Ищите электронные версии книг, сетевые ресурсы страдают небольшой точностью. Строка поиска содержит расширения файлов: djvu, pdf, torrent. Об авторских правах не беспокойтесь, книга качается для ознакомления. Посмотрели, удалили. Нельзя передавать полученную информацию, понятное дело. Попалась брошюра, разработанная АБС Электро, приводящая необходимые сведения по продукции. Внутри некоторых приборов стоят тепловые реле, некоторые другие элементы. Поэтому прозвонить трансформатор вдесятеро сложнее рядового. В бытовой электронике чаще стоит предохранитель на 135 градусов Цельсия, упрятанный витками первичной, вторичной обмотки, по-настоящему сложное изделие преподнесет сюрприз бывалым исследователям. Кстати, термопредохранители иногда украшают магнитопровод, тестер показал разрыв обмотки, отыщите защитные элементы.

  8. Номинальная частота Гц отсутствует, если сеть соответствует стандартной (промышленной). Трансформатор высокочастотный не стоит использовать взамен обычного. Предвидится разное сопротивление обмоток, характеристики поменяются. Трансформатор будет работать неправильно, станет греться сильнее.
  9. Характеристики рабочего режима указываются, если характер работы трансформатора выбивается за рамки термина «продолжительный». Согласно принятым нормам, прибор способен работать сколь угодно долго. В противном случае приводится операционный цикл. После определенного периода активности трансформатору понадобится отдых. Иначе сгорит, сработает защита (реле, предохранители), либо выйдет из строя обмотка вследствие перегрева.
  10. Номинальная полная мощность кВА указывается для значимых обмоток. Полезно знать: под НН понимается низкое, под ВН высокое напряжение. Легко понять, изучив трансформатор сварочного аппарата. Ток электродов большой, напряжение низкое. Витки сформированы толстым проводом, сопротивление маленькое. Номинальная полная мощность позволит согласовать источник с потребителем. Допустим, стоит низковольтное оборудование, требуется быстро подобрать трансформатор. Избегая ломать голову, следует сравнить мощности: потребления, допустимую вторичной обмотки трансформатора. Аспекты прояснятся. Максимальная мощность потребления оборудования ниже рабочей (номинальной) вторичной обмотки трансформатора.

    Шильдик трансформатора тока

  11. Номинал напряжения главной вторичной обмотки выступает характеристикой, по которой понятно, исправен ли трансформатор. Достаточно заручиться отсутствием короткого замыкания, включить первичную обмотку в сеть. Тестером (рассчитанным на указанный диапазон) проведем замер. Намного надежнее измерения сопротивления, попыток вычислить коэффициент передачи.
  12. В стабилизаторах напряжения чаще применяются трансформаторы с переменным количеством витков. Специальный бегунок обходит вторичную обмотку, снимая нужный вольтаж. Маркировка некоторых трансформаторов содержит пределы изменения напряжения. Разумеется, учитывается проверяющим. Кстати, чаще в этом месте кроется неисправность трансформаторов. Либо замыкает соседние витки, либо плохой контакт бегунка. Найденную поломку исправим.
  13. Номинальные токи обмоток иногда позволят не глядя подобрать составные части сети. Например, автомат защиты. Многие устройства предоставляют параметры максимальной нагрузки по току. Полезно амперметром значение измерить, потребуется подключить потребителя. Понятно, короткое замыкание вторичной обмотки делать не следует.
  14. Напряжение короткого замыкания вторичной обмотки указывается процентами номинала. Понятно, что в отличие от идеального источника энергии, изучавшегося преподавателями уроков физики, реальные приборы бессильны выдать показатели. Поэтому при резком возрастании тока напряжение стремительно падает. Проценты даются относительно номинального значения. Конкретное значение посчитаете сами, заручившись помощью калькулятора ОС Виндовс. Стоит ли пытаться организовать короткое замыкание своими руками, сказать затрудняемся. Рискованно: пробки выбьет, трансформатор подвержен опасности.

Надеемся, рассказали про способы устранения неисправностей трансформаторов. Главное – обнаружить причину, затем каждый вертится вокруг собственной оси. Простейшим (часто единственным) вариантом решения проблемы будет перемотка неисправной катушки. Делается проводом, купленным на рынке, посчитать количество витков – отдельное искусство. Проще сделать запрос форуму. В ответ:

  • дадут ссылку на специализированную компьютерную программу;
  • поделятся опытом;
  • посоветуют.

Обратите внимание, условные обозначения, список параметров, определены типом трансформатора. Необязательно идентичны приведенным в обзоре портала ВашТехник.

просмотров