Электронный сигнализатор зарядки аккумуляторной батареи. Автомат для отключения зарядного устройства

Электронный сигнализатор зарядки аккумуляторной батареи. Автомат для отключения зарядного устройства

В статье рассматривается схема несложного устройства, дополнив которым ваше зарядное устройство (ЗУ), процесс зарядки может быть автоматизирован. Так же оно поможет содержать ваш аккумулятор в заряженном состоянии в период длительного хранения, что способствует значительному увеличению его срока службы.

Устройства представляет собой электронное реле, следящее за напряжением подключенного аккумулятора. Реле имеет два порога срабатывания по наибольшему и наименьшему значению напряжения, выставленным в процессе наладки.

Контактная группа К1.1 подключается в разрыв одного из проводов, идущего на клеммник для подключения аккумуляторной батареи. Устройство также запитано с этого клеммника.

Настройка устройства. Для настройки узла понадобится источник питания с регулируемым значением напряжения. Подаем питание на вход XS1 (рис. 1). Устанавливаем движок резистора R 2 в верхнее по схеме положение, а R3 в нижнее. Выставляем значение напряжения 14,5 В. При этом транзистор VT 2 должен быть закрыт, а реле К1 должно быть обесточено. Регулировкой R 3 добиваемся срабатывания реле К1. Теперь устанавливаем напряжение в 12,9 В, регулировкой R 2 добиваемся выключения К1.

Т.к контакты реле К1.2, в отключенном состоянии, шунтируют резистор R 2, настройки срабатывания и отключения К1 являются независимыми друг от друга.

О деталях устройства. Резисторы R 2, R 3 подстроечные, тип СП-5, прецизионный стабилитрон Д818 можно заменить на два включенных встречно Д814 с близкими значениями стабилизации напряжения. Реле К1 с напряжением питания 12 В, с двумя группами нормальнозамкнутых контактов. Контактная группу К1.1, должна быть рассчитанна на ток зарядки аккумулятора.

Автоматическое зарядное устройство предназначено для зарядки и десульфатации 12-ти вольтовых АКБ ёмкостью от 5 до 100 Ач и оценки уровня их заряда. Зарядное имеет защиту от переполюсовки и от короткого замыкания клемм. В нём применено микроконтроллерное управление, благодаря чему осуществляются безопасные и оптимальные алгоритмы зарядки: IUoU или IUIoU, с последующей дозарядкой до полного уровня зарядки. Параметры зарядки можно подстроить под конкретный аккумулятор вручную или выбрать уже заложенные в управляющей программе.

Основные режимы работы устройства для заложенных в программу предустановок.

>>
Режим зарядки - меню «Заряд». Для аккумуляторов емкостью от 7Ач до 12Ач по умолчанию задан алгоритм IUoU. Это значит:

- первый этап - зарядка стабильным током 0.1С до достижения напряжения14.6В

- второй этап -зарядка стабильным напряжением 14.6В, пока ток не упадет до 0,02С

- третий этап - поддержание стабильного напряжения 13.8В, пока ток не упадет до 0.01С. Здесь С - ёмкость батареи в Ач.

- четвёртый этап - дозарядка. На этом этапе отслеживается напряжение на АКБ. Если оно падает ниже 12.7В, включается заряд с самого начала.

Для стартерных АКБ применяем алгоритм IUIoU. Вместо третьего этапа включается стабилизация тока на уровне 0.02C до достижения напряжения на АКБ 16В или по прошествии времени около 2-х часов. По окончанию этого этапа зарядка прекращается и начинается дозарядка.

>> Режим десульфатации - меню «Тренировка». Здесь осуществляется тренировочный цикл: 10 секунд - разряд током 0,01С, 5 секунд - заряд током 0.1С. Зарядно-разрядный цикл продолжается, пока напряжение на АКБ не поднимется до 14.6В. Далее - обычный заряд.

>>
Режим теста батареи позволяет оценить степень разряда АКБ. Батарея нагружается током 0,01С на 15 секунд, затем включается режим измерения напряжения на АКБ.

>> Контрольно-тренировочный цикл. Если предварительно подключить дополнительную нагрузку и включить режим «Заряд» или «Тренировка», то в этом случае, сначала будет выполнена разрядка АКБ до напряжения 10.8В, а затем включится соответствующий выбранный режим. При этом измеряются ток и время разряда, таким образом, подсчитывается примерная емкость АКБ. Эти параметры отображаются на дисплее после окончания зарядки (когда появится надпись «Батарея заряжена») при нажатии на кнопку «выбор». В качестве дополнительной нагрузки можно применить автомобильную лампу накаливания. Ее мощность выбирается, исходя из требуемого тока разряда. Обычно его задают равным 0.1С - 0.05С (ток 10-ти или 20-ти часового разряда).

Схема зарядного автомата для 12В АКБ

Принципиальная схема автоматического автомобильного ЗУ



Рисунок платы автоматического автомобильного ЗУ

Основа схемы - микроконтроллер AtMega16. Перемещение по меню осуществляется кнопками «влево », «вправо », «выбор ». Кнопкой «ресет» осуществляется выход из любого режима работы ЗУ в главное меню. Основные параметры зарядных алгоритмов можно настроить под конкретный аккумулятор, для этого в меню есть два настраиваемых профиля. Настроенные параметры сохраняются в энергонезависимой памяти.

Чтобы попасть в меню настроек нужно выбрать любой из профилей, нажать кнопку «выбор », выбрать «установки », «параметры профиля », профиль П1 или П2. Выбрав нужный параметр, нажимаем «выбор ». Стрелки «влево » или «вправо » сменятся на стрелки «вверх » или «вниз », что означает готовность параметра к изменению. Выбираем нужное значение кнопками «влево» или «вправо», подтверждаем кнопкой «выбор ». На дисплее появится надпись «Сохранено», что обозначает запись значения в EEPROM. Более подробно о настройке читайте на форуме.

Управление основными процессами возложено на микроконтроллер. В его память записывается управляющая программа , в которой и заложены все алгоритмы. Управление блоком питания осуществляется с помощью ШИМ с вывода PD7 МК и простейшего ЦАП на элементах R4, C9, R7, C11. Измерение напряжения АКБ и зарядного тока осуществляется средствами самого микроконтроллера - встроенным АЦП и управляемым дифференциальным усилителем. Напряжение АКБ на вход АЦП подается с делителя R10 R11.


Зарядный и разрядный ток измеряются следующим образом. Падение напряжения с измерительного резистора R8 через делители R5 R6 R10 R11 подается на усилительный каскад, который находится внутри МК и подключен к выводам PA2, PA3. Коэффициент его усиления устанавливается программно, в зависимости от измеряемого тока. Для токов меньше 1А коэффициент усиления (КУ) задается равным 200, для токов выше 1А КУ=10. Вся информация выводится на ЖКИ, подключенный к портам РВ1-РВ7 по четырёхпроводной шине.

Защита от переполюсовки выполнена на транзисторе Т1, сигнализация неправильного подключения - на элементах VD1, EP1, R13. При включении зарядного устройства в сеть транзистор Т1 закрыт низким уровнем с порта РС5, и АКБ отключена от зарядного устройства. Подключается она только при выборе в меню типа АКБ и режима работы ЗУ. Этим обеспечивается также отсутствие искрения при подключении батареи. При попытке подключить аккумулятор в неправильной полярности сработает зуммер ЕР1 и красный светодиод VD1, сигнализируя о возможной аварии.

В процессе заряда постоянно контролируется зарядный ток. Если он станет равным нулю (сняли клеммы с АКБ), устройство автоматически переходит в главное меню, останавливая заряд и отключая батарею. Транзистор Т2 и резистор R12 образуют разрядную цепь, которая участвует в зарядно-разрядном цикле десульфатирующего заряда и в режиме теста АКБ. Ток разряда 0.01С задается с помощью ШИМ с порта PD5. Кулер автоматически выключается, когда ток заряда падает ниже 1,8А. Управляет кулером порт PD4 и транзистор VT1.

Резистор R8 – керамический или проволочный, мощностью не менее 10 Вт, R12 - тоже 10Вт. Остальные - 0.125Вт. Резисторы R5, R6, R10 и R11 нужно применять с допустимым отклонением не хуже 0.5%. От этого будет зависеть точность измерений. Транзисторы T1 и Т1 желательно применять такие, как указаны на схеме. Но если придется подбирать замену, то необходимо учитывать, что они должны открываться напряжением на затворе 5В и, конечно же, должны выдерживать ток не ниже 10А. Подойдут, например, транзисторы с маркировкой 40N03GР , которые иногда используются в тех же БП формата АТХ, в цепи стабилизации 3.3В.


Диод Шоттки D2 можно взять из того же БП, из цепи +5В, которая у нас не используется. Элементы D2,Т1 иТ2 через изолирующие прокладки размещаются на одном радиаторе площадью 40 квадратных сантиметров. Звукоизлучатель - со встроенным генератором, на напряжение 8-12 В, громкость звучания можно подрегулировать резистором R13.

ЖКИ – WH1602 или аналогичный, на контроллере HD44780 , KS0066 или совместимых с ними. К сожалению, эти индикаторы могут иметь разное расположение выводов, так что, возможно, придется разрабатывать печатную плату под свой экземпляр


Налаживание заключается в проверке и калибровке измерительной части. Подключаем к клеммам аккумулятор, либо блок питания напряжением 12-15В и вольтметр. Заходим в меню «Калибровка». Сверяем показания напряжения на индикаторе с показаниями вольтметра, при необходимости, корректируем кнопками «<» и «>». Нажимаем «Выбор».


Далее идет калибровка по току при КУ=10. Теми же кнопками «<» и «>» нужно выставить нулевые показания тока. Нагрузка (аккумулятор) при этом автоматически отключается, так что ток заряда отсутствует. В идеальном случае там должны быть нули или очень близкие к нулю значения. Если это так, это говорит о точности резисторов R5, R6, R10, R11, R8 и хорошем качестве дифференциального усилителя. Нажимаем «Выбор». Аналогично - калибровка для КУ=200. «Выбор». На дисплее отобразится «Готово» и через 3 секунды устройство перейдет в главное меню. Поправочные коэффициенты хранятся в энергонезависимой памяти. Здесь стоит отметить, что если при самой первой калибровке значение напряжения на ЖКИ сильно отличается от показаний вольтметра, а токи при каком - либо КУ сильно отличаются от нуля, нужно подобрать другие резисторы делителя R5, R6, R10, R11, R8, иначе в работе устройства возможны сбои. При точных резисторах поправочные коэффициенты равны нулю или минимальны. На этом наладка заканчивается. И в заключение. Если же напряжение или ток зарядного устройства на каком-то этапе не возрастает до положенного уровня или устройство «выскакивает» в меню, нужно ещё раз внимательно проверить правильность доработки блока питания. Возможно, срабатывает защита.

Переделка БП АТХ под зарядное устройство

Схема электрическая доработки стандартного ATX

В схеме управления лучше использовать прецизионные резисторы, как указано в описании. При использовании подстроечников параметры не стабильные. проверено на собственном опыте. При тестировании данного ЗУ проводил полный цикл разрядки и зарядки АКБ (разряд до 10,8В и заряд в режиме тренировки, потребовалось около суток). Нагревание ATX БП компьютера не более 60 градусов, а модуля МК еще меньще.


Проблем в настройке не было, запустилось сразу, только нужна подстройка под максимально точные показания. После демострации работы другу-автолюбителю этого зарядного автомата, сразу заявка поступила на изготовление еще одного экземпляра. Автор схемы - Slon , сборка и тестирование - sterc .

Обсудить статью АВТОМАТИЧЕСКОЕ ЗАРЯДНОЕ УСТРОЙСТВО АВТОМОБИЛЬНОЕ

Данное устройство подключается как приставка к зарядному устройству, разнообразных схем которых в интернете уже описано немало. Оно выводит на жидкокристаллический дисплей значение входного напряжения, величину тока зарядки аккумулятора, время зарядки и емкость зарядного тока(которая может быть или в Ампер-часах или в миллиампер-часах - зависит только от прошивки контроллера и примененного шунта). Выходное напряжение зарядного устройства не должно быть менее 7 вольт, иначе для данной приставки потребуется отдельный источник питания. Основу устройства составляет микроконтроллер PIC16F676 и жидкокристаллический 2-строчный индикатор SC 1602 ASLB-XH-HS-G. Максимальная зарядная емкость составляет 5500 ма/ч и 95,0 А/ч соответственно.

Принципиальная схема приведена на Рис 1.

Подключение к зарядному устройству - на Рис 2.

При включении микроконтроллер сначала запрашивает требуемую емкость зарядки. Устанавливается кнопкой SB1. Сброс - кнопкой SB2.

Если кнопку не нажимать более 5 секунд - контроллер автоматически переходит в режим измерений. На выводе 2 (RA5)устанавливается высокий уровень.

Алгоритм подсчета емкости в данной приставке следующий:

1 раз в секунду микроконтроллер измеряет напряжение на входе приставки и ток, и если величина тока больше единицы младшего разряда - увеличивает счетчик секунд на 1. Таким образом часы показывают только время зарядки.

Далее микроконтроллер высчитывает средний ток за минуту. Для этого показания зарядного?ока делятся на 60. Целое число записываются в счетчик, а остаток от деления потом прибавляется к следующему измеренному значению тока,и уже потом эта сумма делится на 60. Сделав, таким образом, 60 измерений в счетчике будет число среднего значения тока за минуту.

Далее среднее значение тока в свою очередь делится на 60(по такому же алгоритму). Таким образом, счетчик емкости увеличивается 1 раз в минуту на величину одна шестидесятая от величины среднего тока за минуту.

После этого счетчик среднего значения тока обнуляется и подсчет начинается сначала. Каждый раз, после подсчета емкости зарядки, производится сравнение измеренной емкости и заданной, и при их равенстве на дисплей выдается сообщение - "Зарядка завершена", а во второй строке - значение этой емкости зарядки и напряжение. На выводе 2 микроконтроллера (RA5) появляется низкий уровень, что приводит к гашению светодиода. Данный сигнал можно использовать для включения реле, которое, например, отключает зарядное устройство от сети (см Рис 3).

Наладка устройства сводится только к установке правильных показаний зарядного тока (R1 R3)и входного напряжения (R2)с помощью эталонного амперметра и вольтметра. Для точной установки показаний приставки рекомендуется использовать многооборотные подстроечные резисторы или ставить дополнительные резисторы последовательно с подстроечными (подобрать экспериментально).

Теперь о шунтах.

Для зарядного устройства на ток до 1000 мА можно использовать блок питания на 15 в, в качестве шунта резистор на 5-10 Ом мощностью 5Вт, и последовательно с заряжаемым аккумулятором переменное сопротивление на 20-100 Ом, которым и будет выставляться величина зарядного тока.

Для зарядного тока до 10 А (max 25,5 A) потребуется изготовить шунт из высокоомной проволоки подходящего сечения на сопротивление 0,1 Ом. Проведенные испытания показали, что даже при сигнале с токового шунта равным 0,1 вольт настроечными резисторами R1 и R3 можно легко установить показания тока в 10 А. Однако, чем больше сигнал с датчика тока, тем легче настроить правильные показания.

В качестве шунта для приставки на 10 А я пробовал использовать кусок аллюминиевого провода сечением 1,5 мм длиной 30 см -прекрасно работает.

Печатная плата для данного устройства из-за простоты схемы не разрабатывалась, оно собрано на макетной плате таких же размеров как и жидкокристаллический индикатор и закреплен сзади. Микроконтроллер устанавливается на панельку и позволяет быстро поменять прошивку для перехода на другой ток зарядного устройства.

Эта приставка, схема которой изображена на рисунке, выполнена на мощном составном транзисторе и предназначена для зарядки автомобильной аккумуляторной батареи напряжением 12 В переменным асимметричным током. При этом обеспечивается автоматическая тренировка батареи, что уменьшает склонность ее к сульфатации и продляет срок службы. Приставка может работать совместно практически с любым двуполупериодным импульсным зарядным устройством, обеспечивающим необходимый ток зарядки, например, с промышленным Рассвет-2.

При соединении выхода приставки с батареей (зарядное устройство не подключено), когда конденсатор С1 еще разряжен, начинает течь начальный зарядный ток конденсатора через резистор R1, эмиттерный переход транзистора VT1 и резистор R2. Транзистор VT1 открывается, и через него протекает значительный разрядный ток батареи, быстро заряжающий конденсатор С1. С увеличением напряжения на конденсаторе ток разрядки батареи уменьшается практически до нуля.

После подключения зарядного устройства к входу приставки появляется зарядный ток батареи, а также небольшой ток через резистор R1 и диод VD1. При этом транзистор VT1 закрыт, поскольку падения напряжения на открытом диоде VD1 недостаточно для открывания транзистора. Диод VD3 также закрыт, так как к нему через диод VD2 приложено обратное напряжение заряженного конденсатора С1.

В начале полупериода выходное напряжение зарядного устройства складывается с напряжением на конденсаторе, и зарядка батареи происходит через диод VD2, что приводит к возврату энергии, накопленной конденсатором, в батарею. Далее конденсатор полностью разряжается и открывается диод VD3, через который теперь продолжается зарядка батареи. Снижение выходного напряжения зарядного устройства в конце полупериода до уровня ЭДС батареи и ниже приводит к смене полярности напряжения на диоде VD3, его закрыванию и прекращению зарядного тока.

При этом вновь открывается транзистор VT1 и происходит новый импульс разрядки батареи и зарядки конденсатора. С началом нового полупериода выходного напряжения зарядного устройства начинается очередной цикл зарядки батареи.

Амплитуда и длительность разрядного импульса батареи зависят от номиналов резистора R2 и конденсатора С1. Они выбраны в соответствии с рекомендациями, данными в [Л].

Транзистор и диоды размещают на отдельных теплоотводах площадью не менее 120 см 2 каждый. В приставке применен конденсатор К50-15 на максимально допустимую рабочую температуру +125 °С; его можно заменить конденсаторами больших размеров на номинальное напряжение не менее 160 В, например, К50-22, К50-27 или К50-7 (емкостью 500 мкФ). Резистор R1 -МЛТ-0,5, a R2 - С5-15 или изготовленный самостоятельно.

Кроме указанного на схеме транзистора КТ827 А, можно использовать КТ827Б, КТ827В. В приставке могут быть применены транзисторы КТ825Г - КТ825Е и диоды КД206А, но при этом полярность включения диодов, конденсатора, а также входных и выходных зажимов приставки нужно изменить на противоположную.

просмотров