Зарядное устройство для шуруповерта. Зарядное устройство аккумулятора шуруповерта Зарядка для шуруповерта интерскол 12 вольт схема

Зарядное устройство для шуруповерта. Зарядное устройство аккумулятора шуруповерта Зарядка для шуруповерта интерскол 12 вольт схема

Нередко покупатели дрели жалуются, что «родное» зарядное устройство для шуруповерта слишком медленно заряжает аккумулятор. В результате приходится неоднократно откладывать работу на 2-4 часа. Существует 2 варианта, как можно избежать подобной ситуации. В первом случае потребуется приобрести новое зарядное устройство, во втором - сделать его своими руками.

Разновидности аккумуляторов

Чтобы разобраться, как сделать зарядное устройство для шуруповерта, в первую очередь необходимо изучить разновидности аккумуляторов и их режимы заряда. Существует 3 вида батареек:

Никель-кадмиевые

Данный вид именуется как Ni-Cd, он считается хорошим источником напряжения, который способен отдавать большую мощность. Единственным недостатком является то, что такие аккумуляторы попали в список запрещенных изделий по экологическим нюансам, поэтому в продаже такая разновидность теперь будет встречаться намного реже.

Никель-кадмиевые батареи обладают энергоемкостью от 1200 до 1500 мА/ч. Общая мощность обеспечивается и поддерживается количеством банок внутри

Максимальное напряжение ячейки составляет 1,2 В. Аккумулятор заряжается электротоком 0,1-1 номинальной емкости. Получается, что батарею с ёмкостью в 5 А*ч разрешается подзаряжать током 0,5-5 А.

ВИДЕО: 5 правил зарядки никель-кадмиевых аккумуляторов

Другое название - Pb с кислотным гелевым наполнением. Они обладают средними характеристиками и низкой стоимостью. Минус - аккумуляторы имеют большую массу, за счет чего утяжеляют аппарат. Основное преимущество заключается в возможности использования в любом положении, при этом из емкости не вытекает электролит.

Главная их особенность — это высокое напряжение и сопротивление, благодаря чему даже к концу цикла «заряд-разряд» не наблюдается резкого падения напряжения

Максимальный уровень напряжения ячейки составляет 2 В, при этом ток зарядки батареи всегда соответствует показателю 0,1 С.

Литий-ионные батареи для шуруповерта

Наиболее распространенный вид благодаря полной герметичности емкости. Данный вариант отличается повышенной удельной мощностью, безопасностью, экологичностью, незначительной массой и простотой в утилизации.

Литий-ионный аккумулятор для шуруповёрта Li-ion 18650 Samsung 12.6V (Вольт) 2400mAh

Литий-ионная ячейка обладает максимальной мощностью в 3,3 Вольта. Напряжение разрешается плавно увеличивать при комнатной температуре с 0,1 до 1 С. Таким образом ускоряется процесс зарядки. Но данный метод подходит только для тех аккумуляторов, которые не переразряжались.

Здесь важно помнить, что заряд шуруповерта происходит до 4,2 Вольта, его превышение повлияет на уменьшение эксплуатационного срока, снижение - сократит емкость. Очень важно при подзарядке отслеживать температуру.

При разработке схемы зарядного устройства для шуруповерта своими руками очень важно учитывать, какой именно аккумулятор планируется заряжать. А также нужно дополнительно просчитывать его напряжение - 12 Вольт или 18 Вольт. При работе зарядника для шуруповерта необходимо отслеживать процесс при помощи мультиметра или системой с компаратором напряжения, которая прошла предварительную настройку под определенный тип батареи.

ВИДЕО: Правила выбора аккумулятора для шуруповерта

Как самому собрать зарядное устройство

Создание самодельного зарядного для шуруповерта требует соблюдения техники безопасности и проведения работы строго по заданной схеме. Можно воспользоваться ниже приведенным чертежом, который является универсальным, поскольку такое зарядное оборудование будет подходить для любого типа аккумулятора. Здесь важным параметром является только ток заряда.

Самодельная зарядка

При подзарядке значение тока полностью соответствует имеющему состоянию батареи, а при завершении процесса показатель становится немножко больше.

Схема самого простого ЗУ для шуруповерта

Зарядное устройство для шуруповерта выступает в качестве генератора электротока на транзисторе VT2. Он, в свою очередь, получает питание через выпрямительный мост, контактирующий с занижающим трансформатором. Уровень тока заряда настраивается регулятором резистора R1 при включенной батарее. Он всегда будет оставаться неизменным. R3 работает ограничителем номинального электротока. VD 6 - светодиод, он выступает в качестве индикатора, определяющего, зарядка продолжается или уже завершилась.

Все составляющие из схемы зарядного устройства для шуруповерта устанавливаются на печатной плате, в качестве диодов можно использовать отечественные приборы КД202 и д242. Размещать элементы требуется таким образом, чтобы на плате было минимальное количество пересечений, идеальным вариантом послужит, если не окажется ни одного. Оставляйте между деталями не менее 3 мм.

Транзистор монтируется на теплоотводе 25-55 см 2 . Поле подключения составляющих зарядки для шуруповертов их нужно накрыть корпусом. Здесь могут возникнуть трудности с клеммами и подсоединением батареи. Поэтому дорабатывать зарядное устройство шуруповерта лучше методом модернизации старого:

  • вскройте корпус устаревшего подзарядного устройства;
  • уберите из него все составляющие детали и другую начинку;
  • установите в корпус самодельную схему.

В схеме должны присутствовать следующие элементы:

Наименование позиции

Краткая характеристика

Выпрямительный диод серии 1N-4001

Стандартный светодиод

Разноцветный светодиод различного вида

Переменный резистор проволочного типа 10

Резисторный элемент серии МЛТ0,25 на 330 Ом

Рез0истор МЛТ2,1 Ом

К5035 или 220 1000мФ свыше 50 Вольт

Транзисторная деталь КТ 361В

Трансформатор силовой на 220/24 В и показателем мощности в 100 Вт

Этапы работы:

  1. Подберите наиболее оптимальные габариты для схемы, которые легко вмещаются в корпус со всеми перечисленными составляющими.
  2. Прорисуйте нитью все ее пути по принципиальному чертежу, протравите в медной раме и распаяйте все элементы.
  3. На алюминиевую пластину установите радиатор таким образом, чтобы она не контактировала с какой-либо частью платы.
  4. Надежно зафиксируйте транзистор гайкой М-3.
  5. Соберите составляющие строго по схеме и припаяйте ко всем необходимым деталям клеммы с соблюдением полярности. Выведите электропровод для трансформатора.
  6. Сам трансформатор вместе с предохранителем на 0,5 А установите в корпус и оснастите переходником для включения подзарядки.

ВИДЕО: Как сделать зарядку для Li-ion аккумулятора от шуруповерта

Рейтинг зарядных устройств для шуруповерта

Для тех, кто не планирует заниматься самостоятельной сборкой, предлагаем выбрать из ассортимента готовых зарядных устройств разных производителей.

DEWALT DCB118

Универсальное приспособление FLEXVOLT DEWALT DCB118 используется для восстановления аккумуляторов шуруповертов марки DEWALT напряжением 54В, с равных успехом можно зарядать и любые другие устройств с номинальным напряжением 18 вольт.

FLEXVOLT DEWALT DCB118

Для удобства на корпусе расположен индикатор, благодаря чему можно контролировать процесс. Тип заряжаемых аккумуляторов Li-ion. Масса 850 гр. Цена оборудования 3500 руб.

ONE+ Ryobi RC18120

Заявлено как узкоспециализированное приспособление, предназначенное только для зарядки аккумуляторов Ryobi серии ONE+. Преимущество в наличии только одного блока питания - за счет этого даже снижен вес устройства (всего 460 гр.), при этом внедрена интеллектуальная система мониторинга IntelliCell™, когда каждая ячейка заряжается до максимума в течение 40-50 мин, при этом увеличивается срок службы батарей.

ONE+ Ryobi RC18120

Напряжение составляет 18 вольт, тип аккумулятора - никель-кадмиеывый и литий-ионный. Предусмотрено 4 положения индикатора уровня - 25…50…75…100%. Сам корпус можно крепить на стену. Есть световая индикация уровня. Стоимость устройства 4850 руб.

DC10WC (10.8 В) Makita

Приспособление используется для восстановления литий-ионных аккумуляторов с номинальным напряжением 10,8 вольт. Есть световая индикация, но нет автоматической остановки. Желательно контролировать время, чтобы не допустить перезаполнения емкости.

DC10WC (10.8 В) Makita

Масса 1200 гр. при относительно небольших габаритах - в длину всего 20 см. Есть гарантия производителя 1 год. Цена 2200 руб.

ВИДЕО: Как правильно заряжать Li-ion

Без сомнений, электроинструмент значительно облегчает наш труд, а также сокращает время рутинных операций. В ходу сейчас и всевозможные шуруповёрты с автономным питанием.

Рассмотрим устройство, принципиальную схему и ремонт зарядного устройства для аккумуляторов от шуруповёрта фирмы "Интерскол".

Для начала взглянем на принципиальную схему. Она срисована с реальной печатной платы зарядного устройства.

Печатная плата зарядного устройства (CDQ-F06K1).

Силовая часть зарядного устройства состоит из силового трансформатора GS-1415. Мощность его около 25-26 Ватт. Считал по упрощённой формуле, о которой уже говорил .

Пониженное переменное напряжение 18V со вторичной обмотки трансформатора поступает на диодный мост через плавкий предохранитель FU1. Диодный мост состоит из 4 диодов VD1-VD4 типа 1N5408. Каждый из диодов 1N5408 выдерживает прямой ток 3 ампера. Электролитический конденсатор C1 сглаживает пульсации напряжения после диодного моста.

Основа схемы управления – микросхема HCF4060BE , которая является 14-разрядным счётчиком с элементами для задающего генератора. Она управляет биполярным транзистором структуры p-n-p S9012. Транзистор нагружен на электромагнитное реле S3-12A. На микросхеме U1 реализован своеобразный таймер, который включает реле на заданное время заряда – около 60 минут.

При включении зарядника в сеть и подключении аккумулятора контакты реле JDQK1 разомкнуты.

Микросхема HCF4060BE запитывается от стабилитрона VD6 – 1N4742A (12V). Стабилитрон ограничивает напряжение с сетевого выпрямителя до уровня 12 вольт, так как на его выходе около 24 вольт.

Если взглянуть на схему, то не трудно заметить, что до нажатия кнопки "Пуск" микросхема U1 HCF4060BE обесточена – отключена от источника питания. При нажатии кнопки "Пуск" напряжение питания от выпрямителя поступает на стабилитрон 1N4742A через резистор R6.

Напряжение питания через открытый транзистор S9012 поступает на обмотку электромагнитного реле JDQK1. Контакты реле замыкаются, и на аккумулятор поступает напряжение питания. Начинается заряд аккумулятора. Диод VD8 (1N4007 ) шунтирует реле и защищает транзистор S9012 от скачка обратного напряжения, которое образуется при обесточивании обмотки реле.

Диод VD5 (1N5408) защищает аккумулятор от разряда, если вдруг будет отключено сетевое питание.

Что будет после того, когда контакты кнопки "Пуск" разомкнутся? По схеме видно, что при замкнутых контактах электромагнитного реле плюсовое напряжение через диод VD7 (1N4007 ) поступает на стабилитрон VD6 через гасящий резистор R6. В результате микросхема U1 остаётся подключенной к источнику питания даже после того, как контакты кнопки будут разомкнуты.

Сменный аккумулятор.

Сменный аккумулятор GB1 представляет собой блок, в котором последовательно соединено 12 никель-кадмиевых (Ni-Cd) элементов, каждый по 1,2 вольта.

На принципиальной схеме элементы сменного аккумулятора обведены пунктирной линией.

Суммарное напряжение такого составного аккумулятора составляет 14,4 вольт.

Также в блок аккумуляторов встроен датчик температуры. На схеме он обозначен как SA1. По принципу действия он похож на термовыключатели серии KSD . Маркировка термовыключателя JJD-45 2A . Конструктивно он закреплён на одном из Ni-Cd элементов и плотно прилегает к нему.

Один из выводов термодатчика соединён с минусовым выводом аккумуляторной батареи. Второй вывод подключен к отдельному, третьему разъёму.

Алгоритм работы схемы довольно прост.

При включении в сеть 220V зарядное устройство ни как не проявляет свою работу. Индикаторы (зелёный и красный светодиоды) не светятся. При подключении сменного аккумулятора загорается зелёный светодиод, который свидетельствует о том, что зарядник готов к работе.

При нажатии кнопки "Пуск" электромагнитное реле замыкает свои контакты, и аккумулятор подключается к выходу сетевого выпрямителя, начинается процесс заряда аккумулятора. Загорается красный светодиод, а зелёный гаснет. По истечении 50 – 60 минут, реле размыкает цепь заряда аккумулятора. Загорается светодиод зелёного цвета, а красный гаснет. Зарядка завершена.

После зарядки напряжение на клеммах аккумулятора может достигать 16,8 вольт.

Такой алгоритм работы примитивен и со временем приводит к так называемому "эффекту памяти" у аккумулятора. То есть ёмкость аккумулятора снижается.

Если следовать правильному алгоритму заряда аккумулятора для начала каждый из его элементов нужно разрядить до 1 вольта. Т.е. блок из 12 аккумуляторов нужно разрядить до 12 вольт. В заряднике для шуруповёрта такой режим не реализован .

Вот зарядная характеристика одного Ni-Cd аккумуляторного элемента на 1,2V.

На графике показано, как во время заряда меняется температура элемента (temperature ), напряжение на его выводах (voltage ) и относительное давление (relative pressure ).

Специализированные контроллеры заряда для Ni-Cd и Ni-MH аккумуляторов, как правило, работают по так называемому методу дельта -ΔV . На рисунке видно, что в конце зарядки элемента происходить уменьшение напряжения на небольшую величину – порядка 10mV (для Ni-Cd) и 4mV (для Ni-MH). По этому изменению напряжения контроллер и определяет, зарядился ли элемент.

Так же во время зарядки происходит контроль температуры элемента с помощью термодатчика. Тут же на графике видно, что температура зарядившегося элемента составляет около 45 0 С.

Вернёмся к схеме зарядного устройства от шуруповёрта. Теперь понятно, что термовыключатель JDD-45 отслеживает температуру аккумуляторного блока и разрывает цепь заряда, когда температура достигнет где-то 45 0 С. Иногда такое происходит раньше того, как сработает таймер на микросхеме HCF4060BE. Такое происходит, когда емкость аккумулятора снизилась из-за "эффекта памяти". При этом полная зарядка такого аккумулятора происходит чуть быстрее, чем за 60 минут.

Как видим из схемотехники, алгоритм заряда не самый оптимальный и со временем приводит к потере электроёмкости аккумулятора. Поэтому для зарядки аккумулятора можно воспользоваться универсальным зарядным устройством , например, таким, как Turnigy Accucell 6.

Возможные неполадки зарядного устройства.

Со временем из-за износа и влажности кнопка SK1 "Пуск" начинает плохо срабатывать, а иногда и вообще отказывает. Понятно, что при неисправности кнопки SK1 мы не сможем подать питание на микросхему U1 и запустить таймер.

Также может иметь место выход из строя стабилитрона VD6 (1N4742A) и микросхемы U1 (HCF4060BE). В таком случае при нажатии кнопки включение зарядки не происходит, индикация отсутствует.

В моей практике был случай, когда стабилитрон пробило, мультиметром он "звонился" как кусок провода. После его замены зарядка стала исправно работать. Для замены подойдёт любой стабилитрон на напряжение стабилизации 12V и мощностью 1 Ватт. Проверить стабилитрон на "пробой" можно также, как и обычный диод. О проверке диодов я уже рассказывал.

После ремонта нужно проверить работу устройства. Нажатием кнопки запускаем зарядку АКБ. Приблизительно через час зарядное устройство должно отключиться (засветится индикатор "Сеть" (зелёный). Вынимаем АКБ и делаем "контрольный" замер напряжения на её клеммах. АКБ должна быть заряженной.

Если же элементы печатной платы исправны и не вызывают подозрения, а включения режима заряда не происходит, то следует проверить термовыключатель SA1 (JDD-45 2A) в аккумуляторном блоке.

Схема достаточно примитивна и не вызывает проблем при диагностике неисправности и ремонте даже у

Ни один ремонт не обходится без дрели. Этот электрический прибор питается от сети или батареи. Если для работ выбрана аккумуляторная дрель, для нее понадобится еще и зарядное устройство. Его продают в комплекте с устройством. Однако и такой элемент рано или поздно выходит из строя. Чтобы не случилось досадного обстоятельства, следует изучить конструкционные возможности и описание зарядок. Особенно стоит познакомиться со схемой зарядного устройства дрели-шуруповерта. Это поможет узнать, как правильно его отремонтировать.

Виды зарядных устройств

Существует множество разновидностей приборов для зарядки аккумуляторных дрелей. Они отличаются ценой, принципом работы и особенностями ремонта. Каждый из видов шуруповертов следует рассмотреть подробнее.

Аналоговые устройства со встроенным блоком питания

Такие приборы довольно популярны благодаря невысокой стоимости. Если дрель не будет использована в профессиональных целях, не стоит делать упор на продолжительность работы. Главное условие, которому должен отвечать самый простой зарядник - он должен обеспечивать достаточную токовую нагрузку для зарядки батареи шуруповерта.

Важно! Для начала заряда необходимо, чтобы напряжение на выходе блок питания оказалось выше, чем номинальный показатель батареи прибора.

Работа аналогового устройства с блоком питания осуществляется довольно просто. Такой зарядник эксплуатируется, как стабилизатор. Для примера необходимо рассмотреть схему зарядного устройства для батареи от 9 до 11 В. Не имеет значения, батарея какого типа используется. Аккумуляторные дрели-шуруповерты довольно распространены среди домашних мастеров, поэтому знание особенностей их ремонта пригодится каждому.

Такой блок питания многие домашние мастера собирают своими руками. Спаивание схемы можно провести только на универсальной плате. Чтобы обеспечить рассеивание тепла, микросхемы стабилизатора, необходимо найти радиатор из меди 20 кв. см площади.

Внимание! Стабилизаторы эксплуатируются по компенсационному принципу. Лишнюю энергию можно отвести в виде тепла.

Благодаря выходному трансформатору понижается переменное напряжение с 220 В до 20 В. Рассчитать, какой будет мощность трансформатора, можно по току напряжения на выходе зарядки. Выпрямление переменного тока осуществляется диодным мостом.

После выпрямления ток оказывается пульсирующим. Однако такая особенность тока негативно сказывается на функционировании схемы. Пульсации можно сгладить фильтрующим конденсатором (C1). В качестве стабилизатора используется микросхема КР 142ЕН. Радиолюбители называют ее «кренка». Чтобы получилось напряжение 12 В, необходимо иметь микросхему с индексом 8Б. Управление собирается на транзисторе VT2. Кроме того, используются подстроечные резисторы. Автоматика на такие приборы не устанавливается. Как долго будет заряжаться аккумулятор, зависит от пользователя. Чтобы контролировать заряд, собирается довольно простая схема на транзисторе VT1. В схеме присутствует и диод VD2. Когда будет достигнуто напряжение заряда, индикатор угасает.

В более современных системах имеется коммутатор. Благодаря ему отключается напряжение по окончании заряда. При покупке дешевого шуруповерта с ним в комплекте идет простой зарядник. Это объясняет, почему такие устройства ломаются очень часто. При покупке такого шуруповерта потребитель рискует остаться с новым, но нерабочим прибором. Однако зарядное устройство легко собрать своими руками. Главное - иметь схему.

Самодельный прибор может прослужить намного дольше покупного. Чтобы подобрать значение батареи дрели-шуруповерта, понадобится опытным путем настроить трансформатор и стабилизатор.

Аналоговые устройства с внешним блоком питания

Сама схема зарядного устройства довольно проста. В комплекте с таким прибором идет сетевой блок питания и зарядник. Не имеет смысла осматривать блока питания. Его схема отличается стандартным исполнением. Она включает диодный мост, трансформатор, выпрямитель и конденсаторный фильтр. Обычно на выходе имеется 18 В.

Управление осуществляется с помощью небольшой платы, которая имеет размеры спичечного коробка. Такие сборки не имеют теплоотводной системы. По этой причине такие устройства быстро выходят из строя. Поэтому пользователи часто интересуются, как зарядить аккумуляторную дрель-шуруповерт без зарядника.

Решить эту проблему можно довольно просто:

  • Одним из главных условий является наличие источника питания. При исправной работе «родного» блока можно создать простую схему управления. Если весь комплект вышел из строя, может быть использован блок питания от ноутбука. На выходе получаются нужные 18 В. Такой источник может обладать мощностью, которой хватит для любого аккумулятора.
  • Вторым условием служит умение собирать электросхемы. Детали обычно выпаиваются из старых бытовых приборов. Кроме того, большинство из них продается на радиорынке.

Блок управления должен иметь схему, как на фото:

На вход устанавливается стабилитрон 18 В. Схема, которой будет управляться зарядник, работает на транзисторе КТ817. Чтобы обеспечить усиление, устанавливается транзистор КТ818. При этом он оборудуется радиатором для отвода тепла. В зависимости от того, какой будет ток заряда, на нем может рассеиваться до 10 Вт. Необходимо, чтобы радиатор обладал требуемой площадью - от 30 до 40 кв. см.

Ненадежность китайских аккумуляторов объясняется экономией производителей «на спичках». Чтобы установить точный ток заряда, следует иметь подстроечник 1 Ком. На выходе устанавливается резистор 4,7 Ом. Он также должен обеспечивать достаточное рассеивание тепла. Выдаваемая мощность не превышает 5Вт.

Собранная схема довольно просто размещается в корпусе стандартной зарядки. Радиатор необязательно выносить. Главное - чтобы внутри корпуса была достаточная циркуляция воздуха. Блок питания от ноутбука при этом по-прежнему используется согласно своему предназначению.

Важно! Одним из главных минусов аналоговых зарядных устройств является длительный процесс заряда. В случае с бытовой аккумуляторной дрелью-шуруповертом это не страшно. На простые работы его хватает. Достаточно поставить его заряжаться в ночь перед работами. Простая китайская батарея в шуруповерте обычно держится от 3 до 5 часов работы.

Импульсные

Профессиональные шуруповерты предназначены для интенсивного использования. Поэтому простои при выполнении работ недопустимы. Стоит помнить, что каждый серьезный прибор имеет высокую цену. Поэтому ценовой вопрос следует опустить. Кроме того, в комплекте обычно имеется 2 батареи.

Импульсный блок питания дополняется «умной» схемой управления. Благодаря этому аккумулятор заряжается на все 100% всего за час. Такой же зарядник аналогового типа можно соорудить своими руками. Однако его габариты будут равны размерам самого шуруповерта.

Импульсные приборы хороши тем, что лишены многих недостатков. Они довольно компактны, обладают высокими токами заряда и оборудуются продуманной системой защиты. Имеется лишь одна проблема - схема таких устройств довольно сложна, что сказывается на стоимости прибора.

Однако даже такой аппарат можно соорудить своими силами. Экономия выходит примерно в 2 раза.

Стоит рассмотреть вариант для никель-кадмиевых батарей, которые оборудованы третьим сигнальным контактом. Собирается схема устройства на MAX713. Этот контроллер является довольно популярным. Выходное напряжение будет составлять 25 В. Ток при этом будет постоянным. Собрать подобный источник питания достаточно просто.

Зарядное устройство оборудовано несколькими функциями, делающими его интеллектуальным. После того как уровень напряжения будет проверен, необходимо запустить режим ускоренного разряда. Это позволит предотвратить эффект памяти. Заряд при этом осуществляется за полтора часа. Главной отличительной чертой схемы является возможность выбора типа аккумулятора и напряжения заряда.

При выходе фирменной зарядки профессионального прибора можно хорошо сэкономить на ремонте зарядного устройства для шуруповерта. Схема может быть собрана самостоятельно.

Блок питания для шуруповерта

Довольно часто владельцы дрелей-шуруповертов сталкиваются с ситуацией, когда сам прибор исправно работает, а блок аккумуляторов вышел из строя. Существует множество способов решения этой проблемы. Однако не каждый станет работать с токсичными деталями.

Чтобы продолжать работать с шуруповертом, следует подсоединить внешний блок питания. При наличии стандартного китайского прибора с батареями 14,4 В допускается использование автомобильного аккумулятора. Однако есть и другой вариант - найти трансформатор с выходным напряжением 15-17 В, чтобы собрать полноценный блок питания.

Необходимые детали при этом отличаются дешевизной. Прежде всего, понадобится термостат и диодный мост. Другие элементы конструкции выполняют сервисные функции - показывать входное и выходное напряжение. Стабилизатор приобретать не нужно. Это объясняется нетребовательностью электродвигателя шуруповерта.

Выводы

Как видно, сборка зарядного устройства для аккумуляторной дрели выполняется довольно просто. Главное - не решать сразу выбрасывать электроприбор. При полном выходе аккумуляторов из строя прибор можно переоборудовать под сетевой. Такая работа тоже имеет много тонкостей, с которыми следует познакомиться.

Чтобы соорудить собственную зарядку для шуруповерта, понадобится узнать схему такого устройства и характеристики основных деталей. Сам процесс сборки довольно прост. Главное - уметь работать с паяльником.

Даже при выходе из строя блока питания профессиональной модели шуруповерта его можно сделать сетевым. Если решено ремонтировать прибор самостоятельно, о цене деталей можно не беспокоиться - на радиорынке они стоят копейки. Знание таких особенностей ремонта аккумуляторных шуруповертов поможет выполнить работу самостоятельно.

В конце прошлого года я публиковал пару обзоров на тему переделки батарей шуруповертов. Сегодня я расскажу о альтернативном варианте заряда переделанной батареи при помощи готового зарядного устройства.
В общем как всегда, осмотр, разборка, схемы, тесты.

В прошлый раз я предлагал использовать для заряда старое зарядное с отдельной платой преобразователя. Вариант в общем то неплохой, но мне стали задавать вопросы, а что делать если старое зарядное разбито, поломано, съела кошка.
И вот я случайно наткнулся в одном из магазинов на вариант зарядного устройства, которое подойдет для батарей 3S, т.е. 12.6 Вольта. Так как такой вариант является одним из самых распространенных при переделке старых шуруповертов, то я решил заказать его для обзора.

Упаковка весьма аскетичная, впрочем как и надпись, указывающая напряжение и ток заряда.

Комплект поставки весьма прост, кабель и собственно зарядное устройство.

Кабель в принципе неплохой, вот только вилка подкачала, варианты - резать, менять или искать переходник.

Зарядное устройство выполнено в формате блока питания, довольно увесистое, корпус прочный.

На одном из торцов корпуса расположен двухконтактный сетевой разъем, на второй стороне кабель с привычным 5.5/2.1мм штекером. Длина кабеля около 1 метра.

Так как это именно зарядное устройство, а не блок питания, которым вы заряжаете свой смартфон/планшет, то здесь присутствует индикатор окончания заряда. Светит правда он не очень ярко, при ярком солнце его не будет заметно, как например и в свете вспышки.

Снизу присутствует наклейка с указанием характеристик, ничего нового, помимо того что было указано на упаковке, я не увидел.

Как я выше писал, корпус довольно прочный, но против молотка и ножа он устоять не смог, а других способов разобрать данное изделие нет.

Плата внутри сидит очень крепко. Частично на двухстороннем скотче, частично приклеена силиконом в районе силовых элементов. На фото видно внутренности корпуса, в дополнение там осталась какая-то клейкая масса.

На вид экономно, но вполне качественно. Радиаторы имеют изоляцию и удерживаются за счет самого силового элемента, дополнительного лепестка и силиконовым герметиком.
Также к корпусу приклеен трансформатор и входной дроссель. В общем вынималась плата довольно тяжело.

На входе присутствует предохранитель, а также входной фильтр. К сожалению нет термистора, вместо него перемычка.

1. Входной конденсатор имеет емкость 68мкФ, для мощности около 40 Ватт вполне достаточно.
2. Высоковольтный транзистор CS7N60F в полностью изолированном корпусе.
3, 4. С одной стороны трансформатора спрятался оптрон обратной связи, с другой - правильный помехоподавляющий конденсатор Y класса, так что током вас не убьет.
5. Выходная диодная сборка 10 Ампер 100 Вольт, с запасом как по току, так и по напряжению.
6. Выходные конденсаторы имеют емкость 1000мкФ и напряжение до 25 Вольт, здесь также вопросов нет. Попутно есть место для установки помехоподавляющего дросселя и третьего конденсатора.

Снизу платы компонентов еще больше.

«Горячая» сторона блока питания. Здесь у меня также не возникло вопросов, ну почти не возникло:)

«Холодная» сторона. Здесь расположены элементы стабилизации напряжения, тока, а также индикации окончания заряда.

Претензия к «горячей» стороне у меня была только в плане пайки, а точнее ее качества. Такое ощущение, что ШИМ контроллер перепаивали, так как остальные компоненты запаяны аккуратно.
К выходной стороне вопросов нет, все аккуратно, элементы дополнительно зафиксированы при помощи клея. Операционный усилитель LM358.

Так как обзора подобного устройства у меня еще нет, то не перерисовать схему было нельзя.
Впрочем первичная часть блока питания оказалась практически один в один с блоком питания, который я уже обозревал - . Блок весьма надежный и качественный.
Отличие только в номиналах некоторых компонентов, а также их количестве, микросхема имеет одинаковую распиновку.

Так как схема большая, то чтобы было более понятно, я разбил ее на две части, первичную и вторичную.
Вторичная сторона отличается от привычных схем блоков питания, так как содержит больше узлов.

Распишу отдельно узлы.
1. Зеленый - Узел стабилизации выходного напряжения, отвечающий за режим CV.
2. Красный - Стабилизация тока, режим СС.
3. Синий - узел индикации.
Слева вверху два выпрямителя, основной и дополнительный (D3, С5) для питания операционного усилителя и светодиода. Дополнительное питания необходимо чтобы эти элементы не потребляли ток когда подключен аккумулятор, а зарядное не включено в розетку.
Между красным и синим узлом источник опорного напряжения для узла индикации и стабилизации тока.

И хотя большей частью все сделано вполне корректно, но есть особенность. Параллельно первому конденсатору подключен резистор номиналом 2.2к (R13A), потому потребление в выключенном состоянии есть все равно. Попробовать исправить эту ситуацию можно установкой диода (отмечен красным) вместо перемычки, которая в свою очереди стоит на месте отсутствующего помехоподавляющего дросселя. Но есть проблема, этот диод будет греться, причем заметно, потому я бы рекомендовал оставить как есть.
Теперь что менять если надо другое напряжение/ток.
1. Зеленый - делитель по цепи измерения напряжения, увеличение номинала верхнего резистора увеличит выходное напряжение, нижнего - уменьшит.
2. Синий - Увеличение номинала шунта уменьшит ток, уменьшение - увеличит. Изменение будет пропорционально изменению номинала. Также изменение этого резистора влияет и на индикацию.
R19, R13, увеличение верхнего резистора - уменьшение выходного тока, изменение нижнего действует наоборот.
3. Оранжевый - Делитель порога переключения индикации. Все то же самое как в п.2, только для индикации. Кстати отмечу, что этот узел имеет гистерезис, потому переключение красный/зеленый происходит скачкообразно, а не плавно, мелочь, но приятно.

Отдельно фотка для перфекционистов, здесь я перечислил то, что можно установить на плату.
1. Y- конденсаторы, так как подключение без заземления, то смысла не имеют. Если заменить гнездо на трехконтактное, уменьшат помехи в сеть.
2. Термистор, уменьшит пусковой ток. Например NTC 5D-9
3. Выходной дроссель. Уменьшит уровень пульсаций на выходе, ток более 3 Ампер, индуктивность 1-10мкГн.
4. Варистор, увеличит защищенность блока питания при подаче высокого напряжения на вход. Диаметр 10мм, напряжение 470 Вольт.
5. Х-конденсатор, уменьшит уровень помех в сеть, место под 22-33нФ.
6. Двухобмоточный дроссель, обычно на небольшом колечке, также для уменьшения помех в сеть.
7. Диодная сборка. Можно поставить параллельно первой, немного увеличит КПД и поднимет надежность, лучше ставить такую же как уже используется, 10 Ампер 100 Вольт.
8. Выходной конденсатор. На уровне пульсаций скажется мало, но может поднять надежность работы. 1000мкФ 25 Вольт.

Переходим к тестам.
Для начала пройду по основным позициям
1. Выходное напряжение - завышено примерно на 30мВ, считаю что вполне в норме.
2. Ток от аккумулятора при отключенном питании, около 7мА. Довольно много, разрядит аккумулятор примерно через 2-3 недели. Лучше использовать аккумуляторы с защитой, впрочем защита обязательна в любом случае.
3. Зарядный ток 2.9 Ампера, немного ниже заявленного, но я считаю что ничего страшного.
4. Индикация настроена на ток 270мА, при падении тока заряда ниже этой величины включается зеленый светодиод и погасает красный.
5, 6. Так как устройство не умеет полностью обесточивать аккумулятор, то дальше вы увидите падение тока почти до нуля. К примеру с 66мА до 28мА ток упал примерно за 8 минут.
Режим без полного снятия тока допустим, хотя и не очень желателен. Если аккумулятор исправен, то проблем не будет, но я бы советовал просто не оставлять его на большое время, например день-два.

Дальше я подключил зарядное к электронной нагрузке. Но так как электронная нагрузка не имеет режима CV, то пришлось подключиться минуя цепь стабилизации тока.
Был задан ток нагрузки в 3 Ампера и закрыт корпус для термопрогрева. Попутно контролировался уход напряжения, здесь также проблем нет, 5мВ через час термопрогрева это просто отлично, сказывается то, что большей частью применены точные резисторы.

Так как это зарядное, а не блок питания и большую часть времени оно работает с максимальным током, то я сразу зада ток 3 Ампера. Время теста было 1 час, за это время оно полностью зарядит аккумулятор емкостью 2400-2600мАч. Дальше в любом случае ток начнет падать и тестировать нагрев смысла нет.

1. Спустя час я проверил температуру корпуса, в самом горячем месте прибор показал 59 градусов, хотя на ощупь корпус был не горячий, возможно сказывается то, что пластмасса частично прозрачна в ИК диапазоне.
2. Открыл корпус и измерил температуру, самая высокая была в районе снаббера и шунта первичной стороны, около 80 градусов, транзистор имел температуру 70-72 градуса.
3. Закрыл корпус на пару минут, повернул на 180 градусов, чтобы были видны остальные компоненты и измерил еще раз. В этот раз самую высокую температуру имела выходная диодная сборка, около 85 градусов.

Из тестов могу заключить, что с температурным режимом все нормально, до критических температур есть запас еще около 20-30 градусов.

После обзора было снято видео, где я вкратце объясняю что к чему, просто как дополнение.

Что можно сказать в качестве резюме, сначала по пунктам:
Преимущества
Крепкая и аккуратная конструкция
Применены компоненты с запасом
Хорошая стабильность параметров
Отсутствие перегрева
Четкая работа индикации окончания заряда

Недостатки
Отсутствие полного отключения заряда
Собственное потребление в 7мА.
Вилка кабеля имеет плоские штыри.

Мое мнение. На мой взгляд устройство имеет только один существенный недостаток, оно не снимает зарядный ток полностью. правильный заряд идет до снижения тока ниже 1/10 от установленного, затем отключение и последующее включение если напряжение опять снизится. Конечно можно подумать и сделать какую нибудь схемку с гистерезисом, которая будет не отключать заряд, а снижать выходное напряжение так, чтобы прекращался зарядный ток. Но на мой взгляд, если не оставлять подключенный аккумулятор надолго, то вполне пройдет и вариант как сделано сейчас.
Порадовала довольно неплохая сборка и то, что компоненты установлены с запасом. Также стоит отметить отсутствие перегрева, чем грешит довольно большое количество блоков питания. Мне вообще показалось, что устройство собрали на базе БП 12 Вольт 5 Ампер, подняв немного напряжение и снизив ток, потому получился такой результат.

В общем если вы переделали батареи своего шуруповерта и они имеют напряжение 12.6 Вольта (три последовательных аккумулятора), а родное зарядное не подлежит восстановлению, то довольно неплохой вариант.

На момент заказа зарядное стоило около 13.7 доллара, для обзора менеджер снизил цену до 11 долларов, что на мой взгляд вполне адекватно за данное устройство с учетом его функционала и качества сборки.

На этом все, надеюсь что обзор был полезен.

Небольшой бонус

А не протестировать ли нам аккумулятор смартфона.


Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +52 Добавить в избранное Обзор понравился +79 +144

Шуруповерт – незаменимый инструмент, но обнаруженный недостаток заставляет подумать о том, чтобы внести кое-какие доработки и улучшить схему его зарядного устройства. Оставив шуруповерт зарядиться на ночь, автор этого видео блогер AKA KASYAN наутро обнаружил нагрев акб непонятного происхождения. Притом нагрев был достаточно серьезным. Это не нормально и резко сокращает срок службы аккумулятора. К тому же опасно с точки зрения пожаробезопасности.

Разобрав зарядное устройство, стало ясно, что внутри простейшая схема из трансформатора и выпрямителя. В док-станции всё было еще хуже. Индикаторный светодиод и небольшая схема на одном транзисторе, которая отвечает только за срабатывание индикатора, когда в док-станцию вставлен акб.
Никаких узлов контроля заряда и автоотключения, только блок питания, который будет заряжать бесконечно долго, пока последний не выйдет из строя.

Поиск информации по проблеме привел к выводу, что почти у всех бюджетных шуруповёртов точно такая же система заряда. И лишь у дорогих приборов процессор на управлением реализована умные системы заряда и защит как на самом заряднике, так и в аккумуляторе. Согласитесь, это ненормально. Возможно, по мнению автора ролика, производители специально используют такую систему для того чтобы аккумуляторы быстро выходили из строя. Рыночная экономика, конвейер дураков, маркетинговая тактика и прочие умные и непонятные слова.

Давайте доработаем это устройство, добавив систему стабилизации напряжения и ограничения тока заряда. Аккумулятор на 18 вольт, никель-кадмиевый с емкостью в 1200 миллиампер часов. Эффективный ток заряда для такого акб не более 120 миллиампер. Заряжаться будет долго, но зато безопасно.

Давайте сначала разберемся, что нам даст такая доработка. Зная напряжение заряженного аккумулятора, мы выставим на выходе зарядника именно это напряжение. И когда аккумулятор будет заряжен до нужного уровня, ток заряда снизится до 0. Процесс прекратится, а стабилизация тока позволит заряжать аккумулятор максимальным током не более 120 миллиампер независимо от того, насколько разряжен последний. Иными словами мы автоматизируем процесс заряда, а также добавим индикаторный светодиод, который будет гореть в процессе заряда и погаснет в конце процесса.

Все нужные радиодетали можно приобрести дешево – в этом китайском магазине .
Схема узла. Схема такого узла очень проста и легко реализуема. Затраты всего на 1 доллар. Две микросхемы lm317. Первая включена по схеме стабилизатора тока, вторая стабилизирует выходное напряжение.

Итак, мы знаем, что по схеме будет протекать ток около 120 миллиампер. Это не очень большой ток, поэтому на микросхему не нужно устанавливать теплоотвод. Работает такая система достаточно просто. Во время зарядки образуется падение напряжения на резисторе r1, которого хватит для того, чтобы высвечивался светодиод и по мере заряда ток в цепи будет падать. После некоторой величины падения напряжения на транзисторе будет недостаточное светодиод попросту потухнет. Резистор r2 задает максимальный ток. Его желательно взять на 0,5 ватт. Хотя можно и на 0,25 ватт. По данной ссылке можно скачать программу для расчёта микросхемы.




Данный резистор имеет сопротивление около 10 ом, что соответствует зарядному тока 120 миллиампер. Вторая часть представляет из себя пороговый узел. Он стабилизирует напряжение; выходное напряжение задается путем подбора резисторов r3, r4. Для наиболее точной настройки делитель можно заменить на многооборотный резистор на 10 килоом.
Напряжение на выходе не переделанного зарядного устройства составляло около 26 вольт, при том, что проверка осуществлялась при 3 ваттный нагрузки. Аккумулятор, как уже выше было сказано, на 18 вольт. Внутри 15 никель-кадмиевых банок на 1,2 вольта. Напряжение полностью заряженного аккумулятора составляет около 20,5 вольт. То есть на выходе нашего узла нам нужно выставить напряжение в пределах 21 вольта.


Теперь проверим собранный блок. Как видно, даже при закороченном выходе ток не будет более 130 миллиампер. И это независимо от напряжения на входе, то есть ограничение тока работает как надо. Монтируем собранную плату в док-станцию. В качестве индикатора окончания заряда поставим родной светодиод док-станции, а с транзистором больше не нужна.
Выходное напряжение тоже в пределах установленного. Теперь можно подключить аккумулятор. Светодиод загорелся, пошла зарядка, будем дожидаться завершения процесса. В итоге можно с уверенностью сказать что мы однозначно улучшили эту зарядку. Аккумулятор не нагревается, а главное его можно заряжать сколько угодно, поскольку устройство автоматически отключается, когда аккумулятор будет полностью заряжен.

просмотров