Оперативная аналитическая обработка olap технология. Способы аналитической обработки данных для поддержки принятия решений

Оперативная аналитическая обработка olap технология. Способы аналитической обработки данных для поддержки принятия решений

После проверки полноты и достоверности информации проводится ее аналитическая обработка. Она включает определение системы показателей, изучение которых требуется для достижения целей проводимого анализа. Эти показатели либо уже содержатся в подобранной информации, либо исчисляются в процессе ее аналитической обработки.

Под системой показателей подразумевается такое упорядоченное их множество, в котором каждый показатель дает качественную и количественную характеристику определенной стороны деятельности хозяйствующего субъекта, взаимосвязан с другими показателями, но не дублирует их, обладает свойствами сводимости и делимости.

Количество показателей в процессе аналитической обработки информации может увеличиваться практически безгранично путем их дифференциации или интеграции в зависимости от программы анализа, глубины изучения результатов деятельности и влияющих на них факторов.

Поскольку деятельность хозяйствующих субъектов, их структурных подразделений, а также различных их объединений в основном носит достаточно устойчивый характер, система показателей, с помощью которых она анализируется, обладает известной устойчивостью, но постепенно обогащается новыми показателями по мере возникновения новых задач, изменения общей экономической ситуации, внешних и внутренних условий деятельности хозяйствующих субъектов.

Необходимой предпосылкой для разработки системы аналитических показателей и правильного ее применения является группировка этих показателей по разным признакам (см. рис. 4.1).

Подразделение показателей на абсолютные и относительные имеет существенное значение для определения масштабов и трудоемкости аналитической обработки информации.

В собираемой из разных источников информации содержатся преимущественно абсолютные показатели, характеризующие объемы деятельности анализируемого хозяйствующего субъекта (например, объем реализации товаров, сумма затрат на производство товаров или услуг, объем оптового или розничного товарооборота, сумма авансированного




Рис. 4.1. Классификация аналитических показателей по разным

группировочным признакам

капитала, величина прибыли или убытка, численность персонала, стоимость основных средств, размеры запасов).

Относительные показатели, имеющие первостепенное значение для оценки эффективности работы анализируемой организации в целом или ее внутренних структурных подразделений, рассчитываются уже путем различных математических действий в процессе аналитической обработки информации. Такая аналитическая обработка может быть частично предусмотрена соответствующими нормативными актами в качестве обязанностей бухгалтерии и других внутренних структурных подразделений хозяйствующего субъекта (например, определение себестоимости отдельных изделий, уровня прибыли по отношению к капиталу, расчет экономических нормативов в составе отчетности коммерческих банков).

Расчет относительных показателей усиливает сопоставимость данных за разные хронологические периоды, так как все используемые с этой целью в математических формулах абсолютные показатели исчисляются в валюте, имеющей одну и ту же покупательную силу, т.е. элиминируется влияние инфляции. К тому же все относящиеся к данному периоду абсолютные показатели формируются под воздействием одной и той же внутренней и внешней ситуации. Вот почему в анализе динамические и пространственные сопоставления проводятся преимущественно с использованием относительных, а не абсолютных показателей.

Для усиления сопоставимости данных применяются там, где это возможно, натуральные и переводимые в натуральные с помощью специально устанавливаемых коэффициентов так называемые условно-натуральные измерители. С этой же целью предпочтение в ряде случаев отдается трудовым и элементно-стоимостным измерителям, что позволяет устранить в необходимых случаях влияние на абсолютные показатели изменения в стоимости товаров и в производных от этой стоимости относительных показателях, различий в стоимости товаров, вызванных колебаниями в соотношении перенесенной стоимости основных средств, оплаты живого труда и прибыли в цене продукции. Необходимо учитывать, что даже при применении твердой иностранной валюты для стоимостного измерения абсолютных показателей влияние структурных сдвигов на оценку объема деятельности хозяйствующего субъекта и ее качественные характеристики не устраняется. Поэтому в дальнейшем изложении вопросы и использования различных натуральных, условно-натуральных, трудовых и неполностоимостных измерителей для достижения некоторых целей анализа будут специально рассмотрены.

Группировка аналитических показателей на количественные и качественные очень близка к их подразделению на абсолютные и относительные, но полностью с ней не совпадает. Например, общая сумма прибыли является количественным показателем, но по своему экономическому содержанию относится к качественным характеристикам деятельности объекта, так как сам факт получения прибыли, а не убытка, даже без выведения относительных показателей рентабельности, уже представляется положительным результатом деятельности.

Чрезвычайно существенную роль в экономическом анализе играет подразделение показателей по обобщающие и частные.

Обобщающими считаются показатели, с помощью которых даются сводные характеристики состояния анализируемого хозяйствующего субъекта, степени использования им находящихся в его распоряжении ресурсов и эффективности хозяйствования, выражающейся в достижении преследуемых целей. В качестве первоочередных целей могут выступать получение более высокой прибыли по сравнению со ставкой рефинансирования либо с другими альтернативными способами использования имеющегося у субъекта капитала; достижение более высокого, чем у конкурентов, качества товаров и услуг при таком же или более низком уровне затрат на их производство и обращение; завоевание на этой основе новых рынков и повышение цены фирмы. К числу обобщающих относятся также показатели, характеризующие в целом определенную сторону или направление работы предприятия или же отдельных его структурных подразделений, размеры используемых ими ресурсов и их оборота. Любой обобщающий показатель может быть разложен на ряд частных показателей, играющих по отношению к нему подчиненную роль. Эти частные показатели способствуют выявлению и измерению влияния отдельных внутренних и внешних факторов, определяющих размеры и динамику обобщающего показателя. С помощью частных показателей достигается подчинение локальных целей отдельных подразделений и направлений деятельности хозяйствующего субъекта общим целям его функционирования. Общая цель функционирования экономического субъекта не однозначна, она предполагает одновременное и взаимоувязанное достижение им ряда целей, и поэтому степень ее достижения отражается не одним, а целой системой обобщающих и частных показателей.

Для управления деятельность хозяйствующего субъекта в целом, отдельными ее направлениями и действиями каждого исполнителя сначала разрабатывается модель этой деятельности. Она описывается системой обобщающих и частных показателей, фиксируемых в бизнес-плане, уровень и взаимоувязка которых должны обеспечить достижение планируемых результатов деятельности.

Система плановых показателей, как правило, беднее системы показателей учета, поскольку учет отражает воздействие не только факторов, которые можно заранее предвидеть, но и множество непредсказуемых факторов – объективных и субъективных, например, стихийных бедствий, недобросовестности исполнителей, мошенничества и хищений. Следовательно, в учете отражается влияние на обобщающие и частные показатели всего многообразия действительности.

Система аналитических показателей еще шире, чем в плане и учете, потому что она должна обеспечить отражение результатов хозяйствования и оценку уровня его эффективности по всем планируемым направлениям и многочисленным целям, причем не только в целом по изучаемой относительно самостоятельной экономической системе (предприятию, коммерческому банку), но и по входящим в нее крупным и мелким подразделениям; выявить роль отдельных подразделений в конечных результатах деятельности и влияние разных факторов на хозяйственное развитие. Поэтому система аналитических показателей включает как дифференцированные по участкам деятельности обобщающие показатели (результатные), так и частные (факторные).

Частные показатели, образуемые путем разложения обобщающего либо агрегируемые в обобщающем показателе, в анализе хозяйственной деятельности принято называть также факторными, поскольку их использование позволяет раскрыть и измерить влияние определенных хозяйственных факторов на обобщающие показатели. Как известно, изменения в состоянии анализируемого объекта происходят под воздействием экономических и социальных факторов. Обычно к группе факторов, воздействие которых можно установить непосредственно по данным учета и отчетности, применяется термин «причина». При дальнейшем разложении группы на ее составляющие полученные частные факторные показатели также именуются причинами, если их связь с анализируемым показателем функциональная и их можно исчислить, произведя разные математические действия над показателями отчетности.

В тех случаях, когда выявляется и измеряется влияние на анализируемый показатель других, связанных с ним корреляционно, и сила их влияния измеряется с помощью применения статистико-математических методов, получаемые для детализации анализа частные показатели обычно называют уже не причинами, а факторами.

Следовательно, разграничение терминов «причина» и «фактор» очень условно. Преимущественно оно основано на возможностях непосредственного или опосредованного измерения их влияния с учетом характера связи с анализируемым обобщающим показателем.

Например, отклонения от плана объема производства продукции могут быть вызваны несоответствием плана численности и состава персонала и в то же время средней выработки на одного работающего за анализируемый период. Величины названных выше укрупненных групп факторов и их отклонений от плана непосредственно отражаются в отчетности и называются в анализе причинами отклонений . Однако каждую из этих причин далее можно рассматривать как функцию многих переменных. Так, изменение численности работников детализируют по категориям персонала, выработку на одного работника представляют как произведение выработки на одного рабочего и на удельный вес рабочих в общей численности персонала. Эти аналитические показатели можно исчислить путем непосредственного использования данных отчетности и поэтому их также называют более дифференцированными причинами изменения обобщающего показателя.

Предположим, что далее анализ углубляется с целью выяснения влияния на изменение обобщающего показателя – объема продукции факторов, в свою очередь влияющих на выполнение плана по выработке на одного рабочего, связь которых с этим показателем не может быть непосредственно установлена. Например, ставится задача определить влияние на средний уровень выработки рабочего организационно-технического уровня производства (степени механизации и автоматизации основных технологических процессов и вспомогательных работ, внедрения методов научной организации труда, внешней кооперации и т.д.) и личностных факторов (общего и специального образования, стажа работы, пола, возраста).

По обобщенным данным бухгалтерского и статистического учета измерить влияние перечисленных факторов на выработку, а через нее на объем продукции или же на темпы ее роста нельзя. С этой целью собираются и обрабатываются специальными экономико-математическими методами (преимущественно корреляционными) данные первичного учета и документации технических служб, отделов кадров, труда и заработной платы, а также специально собираемой дополнительно внеучетной информации (анкетного опроса, фотографий и самофотографий рабочего дня, протоколов производственных совещаний и др.). При такой дальнейшей детализации причин их характеристики называются уже факторами.

Измерение влияния отдельных факторов на динамику хозяйственного развития, результаты выполнения плана и эффективность хозяйствования помогают установить их относительное значение в работе предприятия, сосредоточить внимание на основных и решающих, усилить действенность анализа в выявлении резервов.

Единство системы показателей и методологии их расчета должно быть обеспечено для предприятий одного профиля. Попытки применять одинаковые оценочные показатели в хозяйствующих субъектах разных отраслей народного хозяйства не оправдались, так как требуется не тождество применяемых показателей, а их соответствие принципиальному подходу к оценке результатов, достигнутых анализируемым субъектом, с позиций целей его деятельности, локальных и глобального критериев их достижения.

Предприятию не всегда удается достигнуть всех своих целей и решить все поставленные перед ним задачи. Более того, наряду с выполнением плана по одним показателям может быть получен отрицательный результат по другим. В связи с этим при определении рейтинга хозяйствующего субъекта, его структурных подразделений, целесообразно исчислять условный интегральный показатель, в уровне которого нашли бы отражение как степень выполнения плановых заданий по каждому из показателей, так и относительное их значение.

Интегральный показатель, выводимый на базе ряда других весьма различных по своему экономическому содержанию и практическому назначению, не характеризует конкретных результатов работы анализируемого субъекта и степень достижения поставленных перед ним многочисленных целей. Такой показатель можно применять для определения рейтинга. Во всех других случаях его использование не соответствует многоцелевому характеру функционирования хозяйствующих субъектов.

Для оценки выполнения плана и, тем более, уровня эффективности хозяйствования требуется учет всех показателей, входящих в систему, ибо перевыполнение плана по одному из них не освобождает анализируемое хозяйственное звено от обязанности обеспечить достижение запланированного уровня по другим показателям. Сверхплановое улучшение одного из показателей обычно не компенсирует вред, наносимый отставанием по другому показателю, отражающему невыполнение, быть может, еще более важной задачи, поставленной перед данным хозяйствующим субъектом. Например, значительное превышение запланированного уровня производства товаров (работ, услуг) не исключает необходимости обеспечить заданный уровень себестоимости единицы продукции; перевыполнение плана по объему производства и прибыли не может компенсировать невыполнение плана по вводу в действие очистных сооружений и другим мероприятиям по охране окружающей среды.

Наиболее приемлемым способом конструирования интегрального показателя является решение математической задачи исчисления расстояний между точками, характеризующими величины одних и тех же показателей на сравниваемых хозяйствующих субъектах и на условном наилучшем по всем этим показателям предприятии, так называемом эталоне развития, и определение таким путем показателя «уровня развития» каждого из них. Его преимуществом перед другими приемами исчисления интегрального показателя является объективность оценок, поскольку он базируется на математических расчетах.

Другие способы агрегирования показателей недостаточно объективны. Например, при исчислении интегрального показателя значимость того или иного показателя в общей их системе может быть также определена с помощью балльной оценки. Так, если вследствие дефицитности применяемых редких металлов особо важным является их наиболее экономное использование, то наибольший балл присваивается показателю снижения материалоемкости производства по этим металлам. Если в первую очередь необходимо обеспечить дальнейшее расширение ассортимента, то с помощью присвоения этому показателю более высокого балла он выдвигается на первое место в ряду оценочных показателей. Таким образом, несмотря на то, что оценка эффективности производства в отдельных отраслях народного хозяйства и на их предприятиях основана на одинаковой системе показателей, каждому из них может быть присвоен различный балл даже в одной и той же отрасли либо на предприятии в разные периоды времени. Балльная оценка каждого показателя должна отражать его значение в достижении целей функционирования анализируемых хозяйствующих субъектов. Вместе с тем как всякая субъективная оценка эти баллы могут быть установлены произвольно.

По охватываемому периоду различаются показатели, фиксирующие состояние анализируемого хозяйствующего субъекта и результаты его деятельности, либо действия его работников в конкретной области на определенное число, т.е. в статике , либо за анализируемый период, т.е. в динамике . Например, бухгалтерский баланс отражает финансовое состояние, распределение имущества, источники его образования на дату составления, а отчет о движении денежных средств охватывает их остатки, поступление и выбытие, т.е. их динамику за весь анализируемый период.

По отношению к деятельности анализируемого хозяйствующего субъекта и возможностям воздействия на ее результаты различаются показатели, отражающие объективные независящие причины и субъективные , зависящие от него.

В процессе анализа очень существенное значение имеет элиминирования влияния факторов объективного порядка, которые нельзя отнести к полезным результатам или же, наоборот, к недостаткам деятельности самого хозяйствующего субъекта.

Наряду с подбором системы показателей для анализа по намеченной программе большое значение имеет обобщение информации в аналитических таблицах и рисунках. Аналитические таблицы используются для сопоставления аналитически обработанных данных по хронологическим периодам и определения на этой основе динамики изучаемых показателей, сравнения достигнутой или прогнозируемых их величины с базовыми данными, которыми могут быть соответствующие показатели плана предшествующих и прогнозируемых будущих периодов, обязательные нормы, показатели других хозяйствующих субъектов, средние по отрасли или же какие-либо иные, отобранные аналитиком исходя из цели проводимого изучения.

Для таких сопоставлений обычно используются горизонтальные строки аналитической таблицы, в которых проставляются названия сравниваемых данных и их абсолютные и относительные значения. Такие сопоставления по строкам таблицы называются горизонтальным анализом.

По графам аналитической таблицы проводится сопоставление обобщающих показателей с их составляющими – частными показателями – с целью выявления относительного значения этих частных показателей в формировании обобщающих, в частности определяется структура обобщающих показателей. Такой способ отражения аналитически обработанной информации называется вертикальным или структурным анализом.

В аналитической таблице имеются текстовая (слева) и цифровая (справа) части. Для компьютерной обработки информации текстовая часть таблицы может быть зашифрована путем буквенных или цифровых обозначений. Цифры помещаются в графах таблицы на пересекающих их отдельных строках.

Левая часть таблицы, в которой помещаются наименования ее строк, называется «подлежащим», а правая, состоящая из граф, над которыми также указываются их наименования, - «сказуемым».

Обобщение собранной информации во взаимосвязанных, дополняющих или детализирующих одна другую аналитических таблицах позволяет проводить так называемый бестекстовый анализ; тщательно аналитически обработанная информация, размещенная в таблицах, дает возможность сделать необходимые выводы и разработать обоснованные управленческие решения. В этих случаях отпадает необходимость оформлять результаты проведенного анализа в виде текста или же такой же текст излагается предельно лаконично.

Подготовка комплекта аналитических таблиц, которые с достаточной объективностью и полнотой отражали бы все вопросы программы проводимого анализа и его результаты, требует от разработчиков макетов этих таблиц и указаний по их заполнению высокого профессионализма.

Поэтому на практике с этой целью используют типовые методики и в рекомендуемые в них таблицы вносят лишь изменения, вытекающие из индивидуальных особенностей анализируемого хозяйствующего субъекта или сложившейся на нем ситуации.

Используя аналитические таблицы и, особенно, внося в них изменения, необходимо соблюдать общие правила их оформления:

1) над таблицей должно быть помещено ее название и порядковый номер;

2) если во всех строках и графах таблицы применяются одинаковые единицы измерения, то в скобках под названием таблицы в правом углу надо поместить стандартное обозначение единицы измерения, например (тыс. руб.) или ($). Если в строках таблицы используются разные единицы измерения, то их обозначения выносят в заголовки строк, через запятую после его наименования. Если в графах используются разные единицы измерения, то они также должны быть указаны в заголовках столбцов;

3) графы таблицы нумеруются последовательно, начиная с первой, в которых указываются номера строк. В тех случаях, когда показатели разных граф рассчитываются на основе величин, показанных в предыдущих графах, кроме наименования и порядкового номера данной графы должен быть приведен алгоритм расчета с указанием номеров граф, содержащих исходные данные, а также математических действий, которые следует произвести с ними для получения величин, указанных в данной графе, например: [(графа 4 – графа 3) ∙ 100: 3];

4) заголовки в «сказуемом» бывают простыми в тех случаях, когда его графы не имеют общего содержания, либо сложными – тогда, когда общее для нескольких граф содержание детализируется в каждой из них. Тогда заголовок обозначают в виде нескольких ярусов, например:

Для усиления наглядности материалов проведенного анализа нередко применяются графические методы. Например, таблицы, фиксирующие динамику показателей, сопровождаются рисунками, на которых эта динамика представлена в виде кривых или столбиков. Структуру обобщающих показателей в графах аналитических таблиц иллюстрируют в виде круговых диаграмм. Применяются и другие формы диаграмм.

ПРОВЕРКА ДОСТОВЕРНОСТИ ИНФОРМАЦИИ

Собранная из разных источников информация группируется и обрабатывается. При этом особое внимание уделяется проверке согласованности данных и их достоверности. Первичные документы, как правило, объективно отражают суть той или иной хозяйственной операции, но, к сожалению, имеют место и подлоги, искажения, ошибки. Недостоверность информации может быть вызвана рядом причин объективного и субъективного характера.

Процесс проверки включает несколько этапов :

1) счетная проверка (проверка соответствия данных путем составления оборотных ведомостей, таблиц счетной проверки);

2) встречная проверка (сопоставление информации, полученной из разных источников);

3) логическая проверка (аналитик выясняет с учетом сложившейся экономической ситуации насколько можно доверять данным внутренней и внешней информации);

4) корректировка (внесение корректировок в стоимость имущества, балансовой прибыли, размеров собственного капитала и амортизации);

Все вносимые корректировки должны быть обоснованными и объективными.

Подготовка и аналитическая обработка информации о ходе финансово-хозяйственной деятельности предприятия и о внешних и внутренних условиях является важной частью управления предприятием. Этот процесс осуществляется с применением различных технических средств для сбора, переработки, хранения и передачи информации, необходимой для оперативного принятия решений, учета и контроля за ходом производства.

Аналитическая обработка информации включает:

1) определение системы показателей , изучение которых требуется для достижения целей проводимого анализа.

Показатели группируются по:

- способу исчисления (абсолютные и относительные);

- применяемым измерителям (натуральные, стоимостные, трудовые и др.);

- получаемым характеристикам (количественные, качественные);

- степени обобщения (обобщающие, частные);

- охватываемому периоду (статики, динамики);

- отношению к деятельности предприятия (объективные, субъективные);

- слагаемым эффективности (производительность, фондоотдача, качество продукции, материалоотдача);

- стадиям жизненного цикла (проектирование, производство, материальное обеспечение, реализация, эксплуатация).

2) обобщение информации:

а) составление аналитических таблиц ;

Аналитическая таблица – наиболее рациональная и удобная для восприятия форма представления аналитической информации об изучаемых явлениях, представляющая собой систему мыслей, суждений, выраженных языком цифр.

Аналитические таблицы используются для сопоставления аналитически обработанных данных по хронологическим периодам и определения на этой основе: динамики изучаемых показателей; сравнения достигнутой или прогнозируемой их величины с базовыми данными, которыми могут быть соответствующие показатели плана предшествующих и прогнозируемых будущих периодов, обязательные нормы, показатели других хозяйствующих субъектов, отобранные аналитиком исходя из цели проводимого изучения. Табличный материал дает возможность охватить аналитические данные в целом как единую систему. С помощью таблиц значительно легче прослеживаются связи между изучаемыми явлениями.

б) графическое отображение информации;

Для усиления наглядности материалов проведенного анализа, динамика показателей представляется в виде рисунков, графиков, диаграмм, благодаря которым изучаемый материал становится более доходчивым и понятным.

Графики – это масштабное изображение показателей, чисел с помощью геометрических знаков (линий, прямоугольников, кругов) или условно художественных фигур. График, в отличие от таблиц, дает обобщающий рисунок положения или развития изучаемого явления и позволяет зрительно заметить закономерности, которые содержит числовая информация. Основные виды графиков, которые используются в анализе – это диаграммы . По своей форме они делятся на гистограммы (столбчатые, линейчатые), круговые, кольцевые, лепестковые, биржевые, цилиндрические и др. По содержанию различают диаграммы сравнения, структурные, динамические, графики связи, графики контроля и т.д.

в) сравнение – сопоставление однородных объектов с целью выявления их сходства или различий (более подробно рассмотрим далее);

г) приведение показателей в сопоставимый вид , т.е. приведение показателей к единой базе в соответствии с воздействующими факторами, поскольку сравнивать можно только качественно однородные величины. Несопоставимость показателей может быть вызвана разным уровнем цен, разным объемом производства, неоднородностью продукции, структурными изменениями и т.п. Сравнение несопоставимых показателей приведет к неправильным выводам на основе результатов анализа;

д) группировка информации – деление массы изучаемой совокупности объектов на количественно однородные группы по соответствующим признакам. В зависимости от цели анализа используются типологические (группы населения по роду деятельности, предприятий по формам собственности и т.п.); структурные (состав рабочих по профессиям, стажу работы, возрасту и т. п.); аналитические (качественные, количественные) группировки. По сложности построения группировки бывают простые и комбинированные .

е) детализация - последовательное расчленение изучаемых экономических явлений, позволяющее упорядочить анализ, комплексно рассмотреть все факторы, влияющие на показатель, смоделировать взаимные зависимости различных показателей и факторов и т.д.

В течение многих лет информационные технологии концентрировались на построении систем поддержки обработки корпоративных транзакций. Такие системы должны быть визуально отказоустойчивыми и обеспечивать быстрый отклик. Эффективное решение было обеспечено OLTP, которые сосредотачивались на распределенном реляционном окружении БД.

Более поздним достижением в этой области явилось добавление архитектуры клиент – сервер. Было издано много инструментов для развития OLTP приложений.

Доступ к данным часто требуется как OLTP приложениям, так и информационным системам поддержки решений. К сожалению, попытка обслужить оба типа запросов может быть проблематична. Поэтому некоторые компании избрали путь разделения БД на OLTP тип и OLAP тип.

OLAP (Online Analytical Processing – оперативная аналитическая обработка) – это информационный процесс, который дает возможность пользователю запрашивать систему, проводить анализ и т.д. в оперативном режиме (онлайн). Результаты генерируются в течении секунд.

С другой стороны, в OLTP системе огромные объемы данных обрабатываются так скоро, как они поступают на вход.

OLAP системы выполнены для конечных пользователей, в то время как OLTP системы делаются для профессиональных пользователей ИС. В OLAP предусмотрены такие действия, как генерация запросов, запросы нерегламентированных отчетов, проведение статистического анализа и построение мультимедийных приложений.

Для обеспечения OLAP необходимо работать с хранилищем данных (или многомерным хранилищем), а также с набором инструментальных средств, обычно ч многомерными способностями. Этими средствами могут быть инструментарий запросов, электронные таблицы, средства добычи данных (Data Mining), средства визуализации данных и др.

В основе концепции OLAP лежит принцип многомерного представления данных. Э. Кодд рассмотрел недостатки реляционной модели, в первую очередь указав на невозможность объединять, просматривать и анализировать данные с точки зрения множественности измерений, то есть самым понятным для корпоративных аналитиков способом, и определил общие требования к системам OLAP, расширяющим функциональность реляционных СУБД и включающим многомерный анализ как одну из своих характеристик .

В большом числе публикаций аббревиатурой OLAP обозначается не только многомерный взгляд на данные, но и хранение самих данных в многомерной БД. Вообще говоря, это неверно, поскольку сам Кодд отмечает, что реляционные БД были, есть и будут наиболее подходящей технологией для хранения корпоративных данных. Необходимость существует не в новой технологии БД, а скорее, в средствах анализа, дополняющих функции существующих СУБД и достаточно гибких, чтобы предусмотреть и автоматизировать разные виды интеллектуального анализа, присущие OLAP.

По Кодду, многомерное концептуальное представление представляет собой множественную перспективу, состоящую из нескольких независимых измерений, вдоль которых могут быть проанализированы определенные совокупности данных. Одновременный анализ по нескольким измерениям определяется как многомерный анализ. Каждое измерение включает направления консолидации данных, состоящие из серии последовательных уровней обобщения, где каждый вышестоящий уровень соответствует большей степени агрегации данных по соответствующему измерению. Так измерение Исполнитель может определяться направлением консолидации, состоящим из уровней обобщения «предприятие – подразделение – отдел - служащий». Измерение Время может даже включать два направления консолидации – «год – квартал – месяц - день» и «неделя - день», поскольку счет времени по месяцам и по неделям несовместим. В этом случае становится возможным произвольный выбор желаемого уровня детализации информации по каждому из измерений. Операция спуска соответствует движению от высших ступеней консолидации к низшим; напротив, операция подъема означает движение от низших уровней к высшим.

Кодд определил 12 правил, которым должен удовлетворять программный продукт класса OLAP. Эти правила:

1. Многомерное концептуальное представление данных.

2. Прозрачность.

3. Доступность.

4. Устойчивая производительность.

5. Клиент – серверная архитектура.

6. Равноправие измерений.

7. Динамическая обработка разреженных матриц.

8. Поддержка многопользовательского режима.

9. Неограниченная поддержка кроссмерных операций.

10. Интуитивное манипулирование данными.

11. Гибкий механизм генерации отчетов.

12. Неограниченное количество измерений и уровней агрегации.

Набор этих требований, послуживший фактическим определением OLAP, следует рассматривать как рекомендательный, а конкретные продукт оценивать по степени приближения к идеально полному соответствию всем требованиям.

Интеллектуальный анализ данных.

Интеллектуальный анализ данных (ИАД), или Data Mining, - термин, используемый для описания открытия знаний в базах данных, выделения знаний, изыскания данных, исследования данных, обработки образцов данных, очистки и сбора данных; здесь же подразумевается сопутствующее ПО. Все эти действия осуществляются автоматически и позволяют получать быстрые результаты даже непрограммистам.

Запрос производится конечным пользователем, возможно на естественном языке. Запрос преобразуется в SQL – формат. SQL запрос по сети поступает в СУБД, которая управляет БД или хранилищем данных. СУБД находит ответ на запрос и доставляет его назад. Пользователь может затем разрабатывать презентацию или отчет в соответствии со своими требованиями.

Многие важные решения в почти любой области бизнеса и социально сферы основываются на анализе больших и сложных БД. ИАД может быть очень полезным в этих случаях.

Методы интеллектуального анализа данных тесно связаны с технологиями OLAP и технологиями построения хранилищ данных. Поэтому наилучшим вариантом является комплексный подход к их внедрению.

Для того чтобы существующие хранилища данных способствовали принятию управленческих решений, информация должна быть представлена аналитику в нужной форме, то есть он должен иметь развитые инструменты доступа к данным хранилища и их обработки.

Очень часто информационно – аналитические системы, создаваемые в расчете на непосредственное использование лицами, принимающими решения, оказываются чрезвычайно просты в применении, но жестко ограничены в функциональности. Такие статические системы называются Информационными системами руководителя. Они содержат в себе предопределенные множества запросов и, будучи достаточными для повседневного обзора, неспособны ответить на все вопросы к имеющимся данным, которые могут возникнуть при принятии решений. Результатов работы такой системы, как правило, являются многостраничные отчеты, после тщательного изучения которых у аналитика появляется новая серия вопросов. Однако каждый новый запрос, непредусмотренный при проектировании такой системы, должен быть сначала формально описан, закодирован программистом и только затем выполнен. Время ожидания в таком случае может составлять часы и дни, что не всегда приемлемо. Таким образом, внешняя простота статистических ИС поддержки решений, за которую активно борется большинство заказчиков информационно – аналитических систем, оборачивается потерей гибкости.

Динамические ИС поддержки решений, напротив, ориентированы на обработку нерегламентированных (ad hoc) запросов аналитиков к данным. Работа аналитиков с этими системами заключается в интерактивной последовательности формирования запросов и изучения их результатов.

Но динамические ИС поддержки решений могут действовать не только в области оперативной аналитической обработки (OLAP). Поддержка принятия управленческих решений на основе накопленных данных может выполняться в трех базовых сферах.

1. Сфера детализированных данных. Это область действия большинства систем, нацеленных на поиск информации. В большинстве случаев реляционные СУБД отлично справляются с возникающими здесь задачами. Общепризнанным стандартом языка манипулирования реляционными данными является SQL. Информационно – поисковые системы, обеспечивающие интерфейс конечного пользователя в задачах поиска детализированной информации, могут использоваться в качестве надстроек как над отдельными базами данных транзакционных систем, так и над общим хранилищем данных.

2. Сфера агрегированных показателей. Комплексный взгляд на собранную в хранилище данных информацию, ее обобщение и агрегация и многомерный анализ являются задачами систем OLAP. Здесь можно или ориентироваться на специальные многомерные СУБД, или оставаться в рамках реляционных технологий. Во втором случае заранее агрегированные данные могут собираться в БД звездообразного вида, либо агрегация информации может производится в процессе сканирования детализированных таблиц реляционной БД.

3. Сфера закономерностей. Интеллектуальная обработка производится методами интеллектуального анализа данных главными задачами которых являются поиск функциональных и логических закономерностей в накопленной информации, построение моделей и правил, которые объясняют найденные аномалии и/или прогнозируют развитие некоторых процессов.

Полная структура информационно – аналитической системы построенной на основе хранилища данных, показана на рис. 3.2. В конкретных реализациях отдельные компоненты этой схемы часто отсутствуют.

(СУБД. - 1998. - № 4-5)

Современный уровень развития аппаратных и программных средств с некоторых пор сделал возможным повсеместное ведение баз данных оперативной информации на всех уровнях управления. В процессе своей деятельности промышленные предприятия, корпорации, ведомственные структуры, органы государственной власти и управления накопили большие объемы данных. Они хранят в себе большие потенциальные возможности по извлечению полезной аналитической информации, на основе которой можно выявлять скрытые тенденции, строить стратегию развития, находить новые решения.

В последние годы в мире оформился ряд новых концепций хранения и анализа корпоративных данных:

Обзору этих концепций, а также доказательству их взаимодополняемости в деле поддержки принятия управленческих решений, посвящена настоящая статья.

1. Хранилища (склады) данных

В области информационных технологий всегда сосуществовали два класса систем [ , С. 49]:

На первых стадиях информатизации всегда требуется навести порядок именно в процессах повседневной рутинной обработки данных, на что и ориентированы традиционные СОД, поэтому опережающее развитие этого класса систем вполне объяснимо.

Системы второго класса - СППР - являются вторичными по отношению к ним. Часто возникает ситуация, когда данные в организации накапливаются с ряде несвязанных СОД, во многом дублируя друг друга, но не будучи никак согласованы. В таком случае достоверную комплексную информацию получить практически невозможно, несмотря на ее кажущийся избыток.

Целью построения корпоративного хранилища данных является интеграция, актуализация и согласование оперативных данных из разнородных источников для формирования единого непротиворечивого взгляда на объект управления в целом. При этом в основе концепции хранилищ данных лежит признание необходимости разделения наборов данных, используемых для транзакционной обработки, и наборов данных, применяемых в системах поддержки принятия решений. Такое разделение возможно путем интеграции разъединенных в СОД и внешних источниках детализированных данных в едином хранилище, их согласования и, возможно, агрегации. W. Inmon, автор концепции хранилищ данных , определяет такие хранилища как:

  • "предметно-ориентированные,
  • интегрированные,
  • неизменчивые,
  • поддерживающие хронологию

наборы данных, организованные с целью поддержки управления", призванные выступать в роли "единого и единственного источника истины", обеспечивающего менеджеров и аналитиков достоверной информацией, необходимой для оперативного анализа и поддержки принятия решений.

Концепция хранилищ данных предполагает не просто единый логический взгляд на данные организации, а действительную реализацию единого интегрированного источника данных. Альтернативным по отношению к этой концепции способом формирования единого взгляда на корпоративные данные является создание виртуального источника, опирающегося на распределенные базы данных различных СОД. При этом каждый запрос к такому источнику динамически транслируется в запросы к исходным базам данных, а полученные результаты на лету согласовываются, связываются, агрегируются и возвращаются к пользователю. Однако, при внешней элегантности, такой способ обладает рядом существенных недостатков.

  1. Время обработки запросов к распределенному хранилищу значительно превышает соответствующие показатели для централизованного хранилища. Кроме того, структуры баз данных СОД, рассчитанные на интенсивное обновление одиночных записей, в высокой степени нормализованы, поэтому в аналитическом запросе к ним требуется объединение большого числа таблиц, что также приводит к снижению быстродействия.
  2. Интегрированный взгляд на распределенное корпоративное хранилище возможен только при выполнении требования постоянной связи всех источников данных в сети. Таким образом, временная недоступность хотя бы одного из источников может либо сделать работу информационно-аналитической системы (ИАС) невозможной, либо привести к ошибочным результатам.
  3. Выполнение сложных аналитических запросов над таблицами СОД потребляет большой объем ресурсов сервера БД и приводит к снижению быстродействия СОД, что недопустимо, так как время выполнения операций в СОД часто весьма критично.
  4. Различные СОД могут поддерживать разные форматы и кодировки данных, данные в них могут быть несогласованы. Очень часто на один и тот же вопрос может быть получено несколько вариантов ответа, что может быть связано с несинхронностью моментов обновления данных, отличиями в трактовке отдельных событий, понятий и данных, изменением семантики данных в процессе развития предметной области, ошибками при вводе, утерей фрагментов архивов и т. д. В таком случае цель - формирование единого непротиворечивого взгляда на объект управления - может не быть достигнута.
  5. Главным же недостатком следует признать практическую невозможность обзора длительных исторических последовательностей, ибо при физическом отсутствии центрального хранилища доступны только те данные, которые на момент запроса есть в реальных БД связанных СОД. Основное назначение СОД - оперативная обработка данных, поэтому они не могут позволить себе роскошь хранить данные за длительный (более нескольких месяцев) период; по мере устаревания данные выгружаются в архив и удаляются из транзакционной БД. Что касается аналитической обработки, для нее как раз наиболее интересен взгляд на объект управления в исторической ретроспективе.

Таким образом, хранилище данных функционирует по следующему сценарию. По заданному регламенту в него собираются данные из различных источников - баз данных систем оперативной обработки. В хранилище поддерживается хронология: наравне с текущими хранятся исторические данные с указанием времени, к которому они относятся. В результате необходимые доступные данные об объекте управления собираются в одном месте, приводятся к единому формату, согласовываются и, в ряде случаев, агрегируются до минимально требуемого уровня обобщения.

Облегченным вариантом корпоративного хранилища данных могут быть витрины данных (Data Mart), то есть тематические БД, содержащие информацию, относящуюся к отдельным аспектам деятельности организации. Концепция витрин данных была предложена Forrester Research в 1991 году . При этом главная идея заключалась в том, что витрины данных содержат тематические подмножества заранее агрегированных данных, по размерам гораздо меньшие, чем общекорпоративное хранилище данных, и, следовательно, требующие менее производительной техники для поддержания. В 1994 году M. Demarest предложил объединить две концепции и использовать хранилище данных в качестве единого интегрированного источника для многочисленных витрин данных. В таком варианте корпоративная информационно-аналитическая система имеет трехуровневую структуру:

  • общекорпоративное централизованное хранилище данных;
  • тематические витрины данных на уровне подразделений;
  • рабочие места конечных пользователей, снабженные аналитическим инструментарием.

Рассмотренная концепция ориентирована исключительно на хранение, а не на обработку корпоративных данных. Она не предопределяет архитектуру целевых аналитических систем, а только создает поле деятельности для их функционирования, концентрируясь на требованиях к данным. Таким образом, она оставляет свободу выбора во всем, что касается:

  • способов представления данных в целевом хранилище (например, реляционный, многомерный);
  • режимов анализа данных хранилища.

2. Способы аналитической обработки данных

Для того чтобы существующие хранилища данных способствовали принятию управленческих решений, информация должна быть представлена аналитику в нужной форме, то есть он должен иметь развитые инструменты доступа к данным хранилища и их обработки.

По критерию режима анализа данных информационно-аналитические системы подразделяются на две категории [ , ]:

  • статические (включающие предопределенный набор сценариев обработки данных и составления отчетов); в эту категорию входят так называемые информационные системы руководителя (ИСР);
  • динамические (поддерживающие построение и выполнение нерегламентированных запросов и формирование отчетов произвольной формы).

Очень часто ИАС, создаваемые в расчете на непосредственное использование лицами, принимающими решения, оказываются чрезвычайно просты в применении, но жестко ограничены в функциональности. Такие статические СППР [ , С. 55], или Информационные системы руководителя (ИСР) [ , С. 73] - (Executive Information Systems, EIS) [ , С. 4] - содержат в себе предопределенные множества запросов и, будучи достаточными для повседневного обзора, неспособны ответить на все вопросы к имеющимся данным, которые могут возникнуть при принятии решений (ПРИМЕЧАНИЕ. По определению В. Пржиялковского [ , С. 81], ИСР - это "компьютерная система, позволяющая... предоставлять информацию в распоряжение старшего управляющего персонала с ограниченным опытом обращения с ЭВМ".). Результатом работы такой системы, как правило, являются многостраничные отчеты, после тщательного изучения которых у аналитика появляется новая серия вопросов; однако, каждый новый, непредусмотренный при проектировании такой системы, запрос должен быть сначала формально описан, передан программисту, закодирован и только затем выполнен. Время ожидания в таком случае может составлять часы и дни, что не всегда приемлемо. Таким образом, внешняя простота статических СППР, за которую активно борется большинство заказчиков информационно-аналитических систем, оборачивается катастрофической потерей гибкости.

Динамические СППР, напротив, ориентированы на обработку нерегламентированных, неожиданных (ad hoc) запросов аналитиков к данным. Наиболее глубоко требования к таким системам рассмотрел E. F. Codd в статье , положившей начало концепции OLAP. Работа аналитиков с этими системами заключается в интерактивной последовательности формирования запросов и изучения их результатов, каждый из которых может породить потребность новой серии запросов.

Но динамические СППР могут действовать не только в области оперативной аналитической обработки (OLAP); поддержка принятия управленческих решений на основе накопленных данных может выполняться в трех базовых сферах .

По Кодду, многомерное концептуальное представление (multi-dimensional conceptual view) является наиболее естественным взглядом управляющего персонала на объект управления. Оно представляет собой множественную перспективу, состоящую из нескольких независимых измерений, вдоль которых могут быть проанализированы определенные совокупности данных. Одновременный анализ по нескольким измерениям данных определяется как многомерный анализ. Каждое измерение включает направления консолидации данных, состоящие из серии последовательных уровней обобщения, где каждый вышестоящий уровень соответствует большей степени агрегации данных по соответствующему измерению. Так, измерение Исполнитель может определяться направлением консолидации, состоящим из уровней обобщения "предприятие - подразделение - отдел - служащий". Измерение Время может даже включать два направления консолидации - "год - квартал - месяц - день" и "неделя - день", поскольку счет времени по месяцам и по неделям несовместим. В этом случае становится возможным произвольный выбор желаемого уровня детализации информации по каждому из измерений. Операция спуска (drilling down) соответствует движению от высших ступеней консолидации к низшим; напротив, операция подъема (rolling up) означает движение от низших уровней к высшим (рис. 2).


Рис. 2. Измерения и направления консолидации данных.

3.1. Требования к средствам оперативной аналитической обработки

Кодд определил 12 правил, которым должен удовлетворять программный продукт класса OLAP (табл. 1).

Таблица 1. Правила оценки программных продуктов класса OLAP.

1. Многомерное концептуальное представление данных (Multi-Dimensional Conceptual View) Концептуальное представление модели данных в продукте OLAP должно быть многомерным по своей природе, то есть позволять аналитикам выполнять интуитивные операции "анализа вдоль и поперек" ("slice and dice" - перевод С. Д. Кузнецова, выступление на 3-й ежегодной конференции "Корпоративные базы данных "98"), вращения (rotate) и размещения (pivot) направлений консолидации.
2. Прозрачность (Transparency) Пользователь не должен знать о том, какие конкретные средства используются для хранения и обработки данных, как данные организованы и откуда берутся.
3. Доступность (Accessibility) Аналитик должен иметь возможность выполнять анализ в рамках общей концептуальной схемы, но при этом данные могут оставаться под управлением оставшихся от старого наследства СУБД, будучи при этом привязанными к общей аналитической модели. То есть инструментарий OLAP должен накладывать свою логическую схему на физические массивы данных, выполняя все преобразования, требующиеся для обеспечения единого, согласованного и целостного взгляда пользователя на информацию.
4. Устойчивая производительность (Consistent Reporting Performance) С увеличением числа измерений и размеров базы данных аналитики не должны столкнуться с каким бы то ни было уменьшением производительности. Устойчивая производительность необходима для поддержания простоты использования и свободы от усложнений, которые требуются для доведения OLAP до конечного пользователя.
5. Клиент - серверная архитектура (Client-Server Architecture) Большая часть данных, требующих оперативной аналитической обработки, хранится в мэйнфреймовых системах, а извлекается с персональных компьютеров. Поэтому одним из требований является способность продуктов OLAP работать в среде клиент-сервер. Главной идеей здесь является то, что серверный компонент инструмента OLAP должен быть достаточно интеллектуальным и обладать способностью строить общую концептуальную схему на основе обобщения и консолидации различных логических и физических схем корпоративных баз данных для обеспечения эффекта прозрачности.
6. Равноправие измерений (Generic Dimensionality) Все измерения данных должны быть равноправны. Дополнительные характеристики могут быть предоставлены отдельным измерениям, но поскольку все они симметричны, данная дополнительная функциональность может быть предоставлена любому измерению. Базовая структура данных, формулы и форматы отчетов не должны опираться на какое-то одно измерение.
7. Динамическая обработка разреженных матриц (Dynamic Sparse Matrix Handling) Инструмент OLAP должен обеспечивать оптимальную обработку разреженных матриц. Скорость доступа должна сохраняться вне зависимости от расположения ячеек данных и быть постоянной величиной для моделей, имеющих разное число измерений и различную разреженность данных.
8. Поддержка многопользовательского режима (Multi-User Support) Зачастую несколько аналитиков имеют необходимость работать одновременно с одной аналитической моделью или создавать различные модели на основе одних корпоративных данных. Инструмент OLAP должен предоставлять им конкурентный доступ, обеспечивать целостность и защиту данных.
9. Неограниченная поддержка кроссмерных операций (Unrestricted Cross-dimensional Operations) Вычисления и манипуляция данными по любому числу измерений не должны запрещать или ограничивать любые отношения между ячейками данных. Преобразования, требующие произвольного определения, должны задаваться на функционально полном формульном языке.
10. Интуитивное манипулирование данными (Intuitive Data Manipulation) Переориентация направлений консолидации, детализация данных в колонках и строках, агрегация и другие манипуляции, свойственные структуре иерархии направлений консолидации, должны выполняться в максимально удобном, естественном и комфортном пользовательском интерфейсе.
11. Гибкий механизм генерации отчетов (Flexible Reporting) Должны поддерживаться различные способы визуализации данных, то есть отчеты должны представляться в любой возможной ориентации.
12. Неограниченное количество измерений и уровней агрегации (Unlimited Dimensions and Aggregation Levels) Настоятельно рекомендуется допущение в каждом серьезном OLAP инструменте как минимум пятнадцати, а лучше двадцати, измерений в аналитической модели. Более того, каждое из этих измерений должно допускать практически неограниченное количество определенных пользователем уровней агрегации по любому направлению консолидации.

Набор этих требований, послуживших фактическим определением OLAP, достаточно часто критиковался. Так, в говорится, что в рамках 12 требований смешаны:

  • собственно требования к функциональности (1, 2, 3, 6, 9, 12);
  • неформализованные пожелания (4, 7, 10, 11);
  • требования к архитектуре информационной системы, имеющие к функциональности весьма приблизительное отношение (5, 8); например, согласно требованию 5, система, реализованная на основе UNIX-сервера с терминалами, не может быть продуктом OLAP, так как не работает в клиент-серверной архитектуре; так же, OLAP продукт не может являться настольной однопользовательской системой, так как в этом случае нарушается требование 8.

С другой стороны, по утверждению самого Кодда, ни один из имеющихся в настоящее время на рынке продуктов оперативного анализа данных не удовлетворяет полностью всем выдвинутым им требованиям. Поэтому 12 правил следует рассматривать как рекомендательные, а конкретные продукты оценивать по степени приближения к идеально полному соответствию всем требованиям.

3.2. Классификация продуктов OLAP по способу представления данных

В настоящее время на рынке присутствует около 30 продуктов, которые в той или иной степени обеспечивают функциональность OLAP (по данным обзорного Web-сервера http://www.olapreport.com на февраль 1998 года). Обеспечивая многомерное концептуальное представление со стороны пользовательского интерфейса к исходной базе данных, все продукты OLAP делятся на три класса по типу исходной БД.

Помимо перечисленных средств существует еще один класс - инструменты генерации запросов и отчетов для настольных ПК, дополненные функциями OLAP и/или интегрированные с внешними средствами, выполняющими такие функции. Эти довольно развитые системы осуществляют выборку данных из исходных источников, преобразуют их и помещают в динамическую многомерную БД, функционирующую на клиентской станции конечного пользователя. Для работы с небольшими, просто организованными базами эти средства подходят наилучшим образом. Основными представителями этого класса являются BusinessObjects одноименной компании , BrioQuery компании Brio Technology [ , С. 34] и PowerPlay компании Cognos [ , С. 34-35].

3.2.1. Многомерный OLAP (MOLAP)

В специализированных СУБД, основанных на многомерном представлении данных, данные организованы не в форме реляционных таблиц, а в виде упорядоченных многомерных массивов:

  • гиперкубов (все хранимые в БД ячейки должны иметь одинаковую мерность, то есть находиться в максимально полном базисе измерений) или
  • поликубов (каждая переменная хранится с собственным набором измерений, и все связанные с этим сложности обработки перекладываются на внутренние механизмы системы).

Использование многомерных БД в системах оперативной аналитической обработки имеет следующие достоинства.

С другой стороны, имеются существенные ограничения.

Следовательно, использование многомерных СУБД оправдано только при следующих условиях.

  1. Объем исходных данных для анализа не слишком велик (не более нескольких гигабайт), то есть уровень агрегации данных достаточно высок.
  2. Набор информационных измерений стабилен (поскольку любое изменение в их структуре почти всегда требует полной перестройки гиперкуба).
  3. Время ответа системы на нерегламентированные запросы является наиболее критичным параметром.
  4. Требуется широкое использование сложных встроенных функций для выполнения кроссмерных вычислений над ячейками гиперкуба, в том числе возможность написания пользовательских функций.
3.2.2. Реляционный OLAP (ROLAP)

Непосредственное использование реляционных БД в качестве исходных данных в системах оперативной аналитической обработки имеет следующие достоинства.

  1. При оперативной аналитической обработке содержимого хранилищ данных инструменты ROLAP позволяют производить анализ непосредственно над хранилищем (потому что в подавляющем большинстве случаев корпоративные хранилища данных реализуются средствами реляционных СУБД).
  2. В случае переменной размерности задачи, когда изменения в структуру измерений приходится вносить достаточно часто, ROLAP системы с динамическим представлением размерности являются оптимальным решением, так как в них такие модификации не требуют физической реорганизации БД.
  3. Системы ROLAP могут функционировать на гораздо менее мощных клиентских станциях, чем системы MOLAP, поскольку основная вычислительная нагрузка в них ложится на сервер, где выполняются сложные аналитические SQL-запросы, формируемые системой.
  4. Реляционные СУБД обеспечивают значительно более высокий уровень защиты данных и разграничения прав доступа.
  5. Реляционные СУБД имеют реальный опыт работы с очень большими базами данных и развитые средства администрирования.

О недостатках ROLAP-систем уже говорилось при перечислении преимуществ использования многомерных баз данных. Это, во-первых, ограниченные возможности с точки зрения расчета значений функционального типа, а во-вторых - меньшая производительность. Для обеспечения сравнимой с MOLAP производительности реляционные системы требуют тщательной проработки схемы БД и специальной настройки индексов. Но в результате этих операций производительность хорошо настроенных реляционных систем при использовании схемы "звезда" вполне сравнима с производительностью систем на основе многомерных баз данных.

Описанию схемы звезды (star schema) и рекомендациям по ее применению полностью посвящены работы [ , , ]. Ее идея заключается в том, что имеются таблицы для каждого измерения, а все факты помещаются в одну таблицу, индексируемую множественным ключом, составленным из ключей отдельных измерений. Каждый луч схемы звезды задает, в терминологии Кодда, направление консолидации данных по соответствующему измерению (например, Магазин - Город/район - Регион).

В общем случае факты имеют разные множества измерений, и тогда их удобно хранить не в одной, а в нескольких таблицах; кроме того, в различных запросах пользователей может интересовать только часть возможных измерений. Но при таком подходе при большом числе независимых измерений необходимо поддерживать множество таблиц фактов, соответствующих каждому возможному сочетанию выбранных в запросе измерений, что приводит к неэкономному использованию внешней памяти, увеличению времени загрузки данных в БД схемы звезды из внешних источников и сложностям администрирования. Для решения этой проблемы авторы работы предлагают специальное расширение для языка SQL (оператор "GROUP BY CUBE" и ключевое слово "ALL") (ПРИМЕЧАНИЕ. В настоящее время это расширение еще не принято, поэтому данное предложение представляет пока чисто академический интерес.), а авторы [ , ] рекомендуют создавать таблицы фактов не для всех возможных сочетаний измерений, а только для наиболее полных (тех, значения ячеек которых не могут быть получены с помощью последующей агрегации ячеек других таблиц фактов базы данных).

В сложных задачах с многоуровневыми измерениями имеет смысл обратиться к расширениям схемы звезды - схеме созвездия (fact constellation schema) [ , С. 10-11] и схеме снежинки (snowflake schema) [ , С. 13-15]. В этих случаях отдельные таблицы фактов создаются для возможных сочетаний уровней обобщения различных измерений. Это позволяет добиться наилучшей производительности, но часто приводит к избыточности данных.

В любом случае, если многомерная модель реализуется в виде реляционной базы данных, следует создавать длинные и "узкие" таблицы фактов и сравнительно небольшие и "широкие" таблицы измерений. Таблицы фактов содержат численные значения ячеек гиперкуба, а остальные таблицы определяют содержащий их многомерный базис измерений.

Ориентация на представление многомерной информации с помощью звездообразных реляционных моделей позволяет избавиться от проблемы оптимизации хранения разреженных матриц, остро стоящей перед многомерными СУБД (где проблема разреженности решается специальным выбором схемы). Хотя для хранения каждой ячейки в таблице фактов используется целая запись (которая помимо самих значений включает вторичные ключи - ссылки на таблицы измерений), несуществующие значения могут просто не быть включены в таблицу фактов, то есть наличие в базе пустых ячеек исключается. Индексирование обеспечивает приемлемую скорость доступа к данным в таблицах фактов.

4. Интеллектуальный анализ данных

Сфера закономерностей отличается от двух предыдущих тем, что в ней накопленные сведения автоматически обобщаются до информации, которая может быть охарактеризована как знания. Этот процесс чрезвычайно актуален для пользователей сейчас, и важность его будет со временем только расти, так как, согласно закону, приведенному в , "количество информации в мире удваивается каждые 20 месяцев", в то время как "компьютерные технологии, обещавшие фонтан мудрости, пока что только регулируют потоки данных".

Интеллектуальный анализ данных определяется в большинстве публикаций афористически - "извлечение зерен знаний из гор данных" , "разработка данных - по аналогии с разработкой полезных ископаемых" . При этом в английском языке существует два термина, переводимые как ИАД, - Knowledge Discovery in Databases (KDD) и Data Mining (DM). В большинстве работ они используются как синонимы [см., например, , ], хотя некоторые авторы [ , ] рассматривают KDD как более широкое понятие - научное направление, образовавшееся "на пересечении искусственного интеллекта, статистики и теории баз данных" и обеспечивающее процесс извлечения информации из данных и ее использования , а DM - как совокупность индуктивных методов этого процесса, то есть то, что ниже будет определено как стадия свободного поиска ИАД.

Остановимся на следующем определении: ИАД - это процесс поддержки принятия решений, основанный на поиске в данных скрытых закономерностей (шаблонов информации) [ , ]. Следует отметить, что большинство методов ИАД было первоначально разработано в рамках теории искусственного интеллекта (ИИ) в 70-80-х годах, но получили распространение только в последние годы, когда проблема интеллектуализации обработки больших и быстро растущих объемов корпоративных данных потребовала их использования в качестве надстройки над хранилищами данных .

4.2.2. Прогностическое моделирование (Predictive Modeling)

Здесь, на второй стадии ИАД, используются плоды работы первой, то есть найденные в БД закономерности применяются для предсказания неизвестных значений:

  • при классификации нового объекта мы можем с известной уверенностью отнести его к определенной группе результатов рассмотрения известных значений его атрибутов;
  • при прогнозировании динамического процесса результаты определения тренда и периодических колебаний могут быть использованы для вынесения предположений о вероятном развитии некоторого динамического процесса в будущем.

Возвращаясь к рассмотренным примерам, продолжим их на данную стадию. Зная, что некто Иванов - программист, можно быть на 61% уверенным, что его возраст

Следует отметить, что свободный поиск раскрывает общие закономерности, т. е. индуктивен, тогда как любой прогноз выполняет догадки о значениях конкретных неизвестных величин, следовательно, дедуктивен. Кроме того, результирующие конструкции могут быть как прозрачными, т. е. допускающими разумное толкование (как в примере с произведенными логическими правилами), так и нетрактуемыми - "черными ящиками" (например, про построенную и обученную нейронную сеть никто точно не знает, как именно она работает).

4.2.3. Анализ исключений (Forensic Analysis)

Предметом данного анализа являются аномалии в раскрытых закономерностях, то есть необъясненные исключения. Чтобы найти их, следует сначала определить норму (стадия свободного поиска), вслед за чем выделить ее нарушения. Так, определив, что 84% общеобразовательных школ отнесены к муниципальной форме собственности, можно задаться вопросом - что же входит в 16%, составляющих исключение из этого правила? Возможно, им найдется логическое объяснение, которое также может быть оформлено в виде закономерности. Но может также статься, что мы имеем дело с ошибками в исходных данных, и тогда анализ исключений может использоваться в качестве инструмента очистки сведений в хранилище данных .

4.3. Классификация технологических методов ИАД

Все методы ИАД подразделяются на две большие группы по принципу работы с исходными обучающими данными.

  1. В первом случае исходные данные могут храниться в явном детализированном виде и непосредственно использоваться для прогностического моделирования и/или анализа исключений; это так называемые методы рассуждений на основе анализа прецедентов. Главной проблемой этой группы методов является затрудненность их использования на больших объемах данных, хотя именно при анализе больших хранилищ данных методы ИАД приносят наибольшую пользу.
  2. Во втором случае информация вначале извлекается из первичных данных и преобразуется в некоторые формальные конструкции (их вид зависит от конкретного метода). Согласно предыдущей классификации, этот этап выполняется на стадии свободного поиска, которая у методов первой группы в принципе отсутствует. Таким образом, для прогностического моделирования и анализа исключений используются результаты этой стадии, которые гораздо более компактны, чем сами массивы исходных данных. При этом полученные конструкции могут быть либо "прозрачными" (интерпретируемыми), либо "черными ящиками" (нетрактуемыми).

Две эти группы и входящие в них методы представлены на рис. 4.


Рис. 4. Классификация технологических методов ИАД.

4.3.1. Непосредственное использование обучающих данных

Обобщенный алгоритм Lazy-Learning, относящийся к рассматриваемой группе, выглядит так (описание алгоритма взято из ). На вход классификатора подается пример , на выходе ожидается предсказание включающего его класса. Каждый пример представляется точкой в многомерном пространстве свойств (атрибутов) , принадлежащей некоторому классу . Каждый атрибут принимает непрерывные значения либо дискретные значения из фиксированного набора. Для примера возвращается его наиболее вероятный класс.

Индивидуальной особенностью алгоритма k-ближайшего соседа является метод определения в нем апостериорной вероятности принадлежности примера классу:

где возвращает 1, когда аргументы равны, или 0 в противном случае, - функция близости, определяемая как

а - множество k ближайших соседей во множестве известных обучающих примеров, близость которых к классифицируемому примеру определяется функцией расстояния . Метод k-ближайшего соседа рассчитывает расстояние от до каждого по формуле:

причем чаще всего принимается r=2 (эвклидово пространство), а функция в зависимости от типа атрибута определяется следующими способами:

w(f) является функцией веса атрибута f. В чистом алгоритме k-ближайшего соседа:

то есть эта функция считается константой.

Метод ближайшего соседа является частным случаем метода k-ближайшего соседа при k=1. Более сложные алгоритмы типа Lazy-Learning основываются на том же обобщенном алгоритме [ , , ], но или иначе определяют апостериорные вероятности принадлежности примеров классам, или (как, например, Nested Generalized Exemplars Algoritm ) усложняют расчет функции w(f).

Особенность этой группы методов состоит в том, что предсказание неизвестных значений выполняется на основе явного сравнения нового объекта (примера) с известными примерами. В случае большого количества обучающих примеров, чтобы не сканировать последовательно все обучающее множество для классификации каждого нового примера, иногда используется прием выборки относительно небольшого подмножества "типичных представителей" обучающих примеров, на основе сравнения с которыми и выполняется классификация. Однако, этим приемом следует пользоваться с известной осторожностью, так как в выделенном подмножестве могут не быть отражены некоторые существенные закономерности.

Что касается самого известного представителя этой группы - метода k-ближайшего соседа, - он более приспособлен к тем предметным областям, где атрибуты объектов имеют преимущественно численный формат, так как определение расстояния между примерами в этом случае является более естественным, чем для дискретных атрибутов.

4.3.2. Выявление и использование формализованных закономерностей

Методы этой группы извлекают общие зависимости из множества данных и позволяют затем применять их на практике. Они отличаются друг от друга:

  • по типам извлекаемой информации (которые определяются решаемой задачей - см. классификацию задач ИАД выше);
  • по способу представления найденных закономерностей.

Формализм, выбранный для выражения закономерностей, позволяет выделить три различных подхода, каждый из которых уходит своими корнями в соответствующие разделы математики:

  • методы кросс-табуляции;
  • методы логической индукции;
  • методы вывода уравнений.

Логические методы наиболее универсальны в том смысле, что могут работать как с численными, так и с другими типами атрибутов. Построение уравнений требует приведения всех атрибутов к численному виду, тогда как кросс-табуляция, напротив, требует преобразования каждого численного атрибута в дискретное множество интервалов.

Методы кросс-табуляции

Кросс-табуляция является простой формой анализа, широко используемой в генерации отчетов средствами систем оперативной аналитической обработки (OLAP). Двумерная кросс-таблица представляет собой матрицу значений, каждая ячейка которой лежит на пересечении значений атрибутов. Расширение идеи кросс-табличного представления на случай гиперкубической информационной модели является, как уже говорилось, основой многомерного анализа данных, поэтому эта группа методов может рассматриваться как симбиоз многомерного оперативного анализа и интеллектуального анализа данных.

Кросс-табличная визуализация является наиболее простым воплощением идеи поиска информации в данных методом кросс-табуляции. Строго говоря, этот метод не совсем подходит под отмеченное свойство ИАД - переход инициативы к системе в стадии свободного поиска. На самом деле кросс-табличная визуализация является частью функциональности OLAP. Здесь система только предоставляет матрицу показателей, в которой аналитик может увидеть закономерность. Но само предоставление такой кросс-таблицы имеет целью поиск "шаблонов информации" в данных для поддержки принятия решений, то есть удовлетворяет приведенному определению ИАД. Поэтому неслучайно, что множество авторов [ , , ] все же относит кросс-табличную визуализацию к методам ИАД.

К методам ИАД группы кросс-табуляции относится также использование байесовских сетей (Bayesian Networks) , в основе которых лежит теорема Байеса теории вероятностей для определения апостериорных вероятностей составляющих полную группу попарно несовместных событий по их априорным вероятностям:

Байесовские сети активно использовались для формализации знаний экспертов в экспертных системах , но с недавних пор стали применяться в ИАД для извлечения знаний из данных.

После подрезания дерева его различные терминальные узлы оказываются на разных уровнях, то есть путь к ним включает разное количество проверок значений атрибутов; другими словами, для прихода в терминальные узлы, лежащие на высоких уровнях дерева, значения многих атрибутов вообще не рассматриваются. Поэтому при построении деревьев решений порядок тестирования атрибутов в узлах решения имеет решающее значение.

Стратегия, применяемая в алгоритмах индукции деревьев решений, называется стратегией разделения и захвата (divide-and-conquer), в противовес стратегии отделения и захвата (separate-and-conquer), на которой построено большое количество алгоритмов индукции правил. Quinlan описал следующий алгоритм разделения и захвата.

Множество атрибутов ;
- множество возможных значений атрибута (таким образом, области определения непрерывных атрибутов для построения деревьев решений также должны быть разбиты на конечное множество интервалов).

Quinlan предложил вычислять E-оценку следующим образом. Пусть для текущего узла:

Число положительных примеров;
- число отрицательных примеров;
- число положительных примеров со значением для ;
- число отрицательных примеров со значением для .

E-оценка - это теоретико-информационная мера, основанная на энтропии. Она показывает меру неопределенности в классификации, возникающей при использовании рассматриваемого атрибута в узле решения. Поэтому считается, что наибольшую классифицирующую силу имеет атрибут с наименьшей E-оценкой. Однако, определенная рассмотренным образом E-оценка имеет и недостатки: она, в частности, предоставляет при построении дерева преимущество атрибутам с большим количеством значений. Поэтому в некоторых работах [ , ] предложены модификации E-оценки, устраняющие эти недостатки.

Подрезание дерева решений для улучшения прогностической точности при классификации новых примеров обычно производят над построенным полным деревом, то есть выполняют процедуру поступрощения. Двигаясь снизу-вверх, заменяют узлы решения с соответствующими поддеревьями терминальными узлами до тех пор, пока не будет оптимизирована заданная эвристическая мера.

Индукция правил

Популярность деревьев решений проистекает из быстроты их построения и легкости использования при классификации. Более того, деревья решений могут быть легко преобразованы в наборы символьных правил - генерацией одного правила из каждого пути от корня к терминальной вершине. Однако, правила в таком наборе будут неперекрывающимися, потому что в дереве решений каждый пример может быть отнесен к одному и только к одному терминальному узлу. Более общим (и более реальным) является случай существования теории, состоящей из набора неиерархических перекрывающихся символьных правил. Значительная часть алгоритмов, выполняющих индукцию таких наборов правил, объединяются стратегией отделения и захвата (separate-and-conquer), или покрывания (covering) , начало которой положили работы R. Michalski [ , ]. Термин "отделение и захват" сформулировали Pagallo и Haussler , охарактеризовав эту стратегию индукции следующим образом:

  • произвести правило, покрывающее часть обучающего множества;
  • удалить покрытые правилом примеры из обучающего множества (отделение);
  • последовательно обучиться другим правилам, покрывающим группы оставшихся примеров (захват), пока все примеры не будут объяснены.

Рис. 5 показывает общий алгоритм индукции правил методом отделения и захвата . Разные варианты реализации вызываемых в общем алгоритме подпрограмм определяют разнообразие известных методов отделения и захвата.


Рис. 5. Общий алгоритм отделения и захвата для индукции правил.

Алгоритм SEPARATEANDCONQUER начинается с пустой теории. Если в обучающем множестве есть положительные примеры, вызывается подпрограмма FINDBESTRULE для извлечения правила, покрывающего часть положительных примеров. Все покрытые примеры отделяются затем от обучающего множества, произведенное правило включается в теорию, и следующее правило ищется на оставшихся примерах. Правила извлекаются до тех пор, пока не останется положительных примеров или пока не сработает критерий остановки RULESTOPPINGCRITERION. Зачастую полученная теория подвергается постобработке POSTPROCESS.

Процедура FINDBESTRULE ищет в пространстве гипотез правило, которое оптимизирует выбранный критерий качества, описанный в EVALUATERULE. Значение этой эвристической функции, как правило, тем выше, чем больше положительных и меньше отрицательных примеров покрыто правилом-соискателем (candidate rule). FINDBESTRULE обрабатывает Rules, упорядоченный список правил-соискателей, порожденных процедурой INITIALIZERULE.

Новые правила всегда вставляются в нужные места (INSERTSORT), так что Rules постоянно остается списком, упорядоченным по убыванию эвристических оценок правил. В каждом цикле SELECTCANDIDATES отбирает подмножество правил-соискателей, которое затем очищается в REFINERULE. Каждый результат очистки оценивается и вставляется в отсортированный список Rules, если только STOPPINGCRITERION не предотвращает это. Если оценка NewRule лучше, чем у лучшего из ранее найденных правил, значение NewRule присваивается переменной BestRule. FILTERRULES отбирает подмножество упорядоченного списка правил, предназначенное для использования в дальнейших итерациях. Когда все правила-соискатели обработаны, наилучшее правило возвращается.

Основной проблемой, стоящей перед алгоритмами индукции правил, остается избежание переподгонки при использовании зашумленных данных. Средства избежания переподгонки в алгоритмах отделения и захвата могут обрабатывать шум:

Сравнение возможностей деревьев решений и индукции правил

Индукция правил и деревья решений, будучи способами решения одной задачи, значительно отличаются по своим возможностям. Несмотря на широкую распространенность деревьев решений, индукция правил по ряду причин, отмеченных в [ , , ], представляется более предпочтительным подходом.

С другой стороны, индукция правил осуществляется значительно более сложными (и медленными) алгоритмами, чем индукция деревьев решений. Особенно большие трудности возникают с поступрощением построенной теории, в отличие от простоты подрезания деревьев решений, на что обратил внимание Furnkranz : отсечение ветвей в дереве решений никогда не затронет соседние ветви, тогда как отсечение условий правила оказывает влияние на все перекрывающиеся с ним правила (рис. 6).


Рис. 6. Поступрощение в обучающих алгоритмах
(a) разделения и захвата и (b) отделения и захвата.

Рис. 6(a) иллюстрирует работу поступрощения в индукции деревьев решений. Правая половина переусложненного дерева покрывается множествами C и D обучающих примеров. Когда упрощающий алгоритм решает отсечь эти две терминальные вершины, порождающий их узел становится терминальным, который теперь покрывается примерами . Левая ветвь дерева решений не затронута данной операцией.

С другой стороны, отсечение условий от правила означает его обобщение, то есть в новом виде оно будет покрывать больше положительных и больше отрицательных примеров. Следовательно, эти дополнительные положительные и отрицательные примеры должны быть исключены из обучающего множества, дабы не воздействовать на индукцию последующих правил. В случае на рис. 6(b) первое из трех правил упрощается и начинает покрывать не только примеры, покрываемые оригинальной версией, но и все примеры, которые покрывает третье правило, а также часть примеров, которые покрывает второе правило. Если третье правило после этого может быть просто удалено алгоритмом поступрощения, то ситуация с оставшимся множеством примеров B2 не такая простая. Второе правило, естественно, покрывает все примеры множества B2, потому что оно было произведено для покрытия примеров включающего его множества B. Однако вполне может статься, что другое правило окажется более подходящим для отделения положительных примеров B2 от оставшихся отрицательных примеров. Корректная обработка таких ситуаций требует тесной интеграции процессов предупрощения и поступрощения, значительно усложняющей алгоритм индукции правил и ухудшающей его производительность .

Следовательно, исходя из проведенного сравнения, можно заключить, что построение деревьев решений оправдано в несложных задачах при небольшом количестве исходной информации благодаря простоте и быстроте их индукции. Однако при анализе больших объемов данных, накопленных в хранилищах, использование методов индукции правил предпочтительнее, несмотря на их относительную сложность.

Методы вывода уравнений

Методы вывода уравнений пытаются выразить закономерности, скрытые в данных, в форме математических выражений. Поэтому они способны работать только с атрибутами численного типа, тогда как другие атрибуты должны быть искусственно закодированы численными значениями. Отсюда вытекает несколько проблем, ограничивающих использование этих методов на практике. Тем не менее, они широко применяются во многих приложениях.

Статистика

Классические методы статистического анализа применяются в средствах ИАД чаще всего для решения задачи прогнозирования.

  1. Выявление тенденций динамических рядов. Тенденцию среднего уровня можно представить в виде графика или аналитической функции, вокруг значения которой варьируют фактические значения уровней исследуемого процесса. Часто тенденции среднего уровня называют детерминированной компонентой процесса, и соответствующий динамический pяд выражается уравнением , где - уровень pяда в момент времени t, - детеpминиpованная компонента pяда, - случайная компонента. Детерминированная компонента обычно представляется достаточно простой аналитической функцией - линейной, параболической, гиперболической, экспоненциальной, - параметры которой подбираются согласно историческим данным для лучшей аппроксимации исторических данных.
  2. Гармонический анализ. Во многих случаях сглаживание рядов динамики с помощью определения тренда не дает удовлетворительных результатов, так как в остатках наблюдается автокоppеляция. Причиной автокоppелиpованности остатков могут быть нередко встречающиеся в pядах динамики заметные периодические колебания относительно выделенной тенденции. В таких случаях следует прибегать к гармоническому анализу, то есть к выделению из динамического ряда периодической составляющей. По результатам выделения из динамического ряда тренда и периодической составляющей может выполняться статистический прогноз процесса по принципу экстраполяции, по предположению, что параметры тренда и колебаний сохранятся для прогнозируемого периода [ , С. 304].
  3. Корреляционно-регрессионный анализ. В отличие от функциональной (жестко детерминированной) связи, статистическая (стохастически детерминированная) связь между переменными имеет место тогда, когда с изменением значения одной из них вторая может в определенных пределах принимать любые значения с некоторыми вероятностями, но ее среднее значение или иные статистические характеристики изменяются по определенному закону [ , С. 191-192]. Частным случаем статистической связи, когда различным значениям одной переменной соответствуют различные средние значения другой, является корреляционная связь. В соответствии с сущностью корреляционной связи ее изучение имеет две цели:
    1) измерение параметров уравнения, выражающего связь средних значений зависимых переменных со значениями независимой переменной (зависимость средних значений результативного признака от значений факторных признаков);
    2) измерение тесноты связи признаков между собой [ , С. 195-196].
    Метод корреляционно-регрессионного анализа хорошо изучен [ , 19, 29] и широко применяется на практике. Однако, он имеет ряд ограничений:
    1) для обеспечения достаточной точности и надежности число наблюдений должно быть в десятки или сотни раз больше числа факторов, чтобы закон больших чисел, действуя в полную силу, обеспечил эффективное взаимопогашение случайных отклонений от закономерного характера связи признаков;
    2) для надежного выражения закономерности по средней величине требуется достаточно качественная однородность совокупности, чтобы параметры корреляции не были извращены; кроме того, иногда в качестве условия корреляционного анализа выдвигают необходимость подчинения распределения совокупности по результативному и факторным признакам нормальному закону распределения вероятностей (это условие связано с применением метода наименьших квадратов при расчете параметров корреляции - только при нормальном распределении он дает оценку параметров, отвечающую принципам максимального правдоподобия), хотя на практике даже при приближенном выполнении этой предпосылки метод наименьших квадратов дает неплохие результаты [ , С. 14];
    3) метод корреляционно-регрессионного анализа не может объяснить роли факторных признаков в создании результативного признака [ , С. 198];
    4) интерпретировать корреляционные показатели следует лишь в терминах вариаций результативного и факторного признаков; если же задача состоит в измерении связи между изменениями признаков объекта во времени, то метод корреляционно-регрессионного анализа требует значительных изменений (требуется исследование корреляции рядов динамики) [ ; , С. 307-313].
    Получаемые в результате применения анализа корреляционно-регрессионные модели (КРМ) обычно достаточно хорошо интерпретируемы и могут использоваться в прогностическом моделировании. Но, как отмечается в , невозможно применять этот вид анализа, не имея глубоких знаний в области статистики. Теоретическая подготовка аналитика играет здесь особенно важную роль, поэтому немногие существующие средства ИАД предлагают метод корреляционно-регрессионного анализа в качестве одного из инструментов обработки данных.
  4. Корреляция рядов динамики. Проблема изучения причинных связей во времени очень сложна, и полное решение всех задач такого изучения до сих пор не разработано [ , С. 307]. Основная сложность состоит в том, что при наличии тренда за достаточно длительный промежуток времени большая часть суммы квадратов отклонений связана с трендом; при этом, если два признака имеют тренды с одинаковым направлением изменения уровней, то это вовсе не будет означать причинной зависимости. Следовательно, чтобы получить реальные показатели корреляции, необходимо абстрагироваться от искажающего влияния трендов - вычислить отклонения от трендов и измерить корреляцию колебаний (подробному рассмотрению этого подхода посвящена полностью работа ). Однако, не всегда допустимо переносить выводы о тесноте связи между колебаниями на связь рядов динамики в целом (согласно приведенному в [ , С. 312] примеру, правомерно рассматривать связь между колебаниями урожайности и колебаниями суммы выпавших за лето осадков, но связь между урожайностью и дозой удобрений нельзя свести только к корреляции колебаний).

Нейронные сети

Искусственные нейронные сети как средство обработки информации моделировались по аналогии с известными принципами функционирования биологических нейронных сетей. Их структура базируется на следующих допущениях [ , С. 3]:

  • обработка информации осуществляется во множестве простых элементов - нейронов;
  • сигналы между нейронами передаются по связям от выходов ко входам;
  • каждая связь характеризуется весом, на который умножается передаваемый по ней сигнал;
  • каждый нейрон имеет активационную функцию (как правило, нелинейную), аргумент которой рассчитывается как сумма взвешенных входных сигналов, а результат считается выходным сигналом.

Таким образом, нейронные сети представляют собой наборы соединенных узлов, каждый из которых имеет вход, выход и активационную функцию (как правило, нелинейную) (рис. 7). Они обладают способностью обучаться на известном наборе примеров обучающего множества. Обученная нейронная сеть представляет собой "черный ящик" (нетрактуемую или очень сложно трактуемую прогностическую модель), которая может быть применена в задачах классификации, кластеризации и прогнозирования .


Рис. 7. Нейрон с активационной функцией F; .

Обучение нейронной сети заключается в подстройке весовых коэффициентов, связывающих выходы одних нейронов со входами других. Обучение сети может производиться по одному из двух базовых сценариев:

Чаще всего средства ИАД используют специальный тип нейронных сетей, обучаемых "с учителем", - многослойные персептроны [ , С. 54-55]. На рис. 8 изображена такая нейронная сеть с двумя слоями нейронов, имеющая три входных и три выходных переменных (в общем случае количество входов, количество выходов, число слоев и число нейронов в каждом внутреннем слое могут быть какими угодно). Выход каждого нейрона предыдущего слоя соединен со входом каждого нейрона последующего слоя.


Рис. 8. Многослойный персептрон, обучаемый процедурой обратного распространения ошибки.

Настройка весов многослойного персептрона осуществляется алгоритмом обратного распространения ошибки [ , С. 56-69]. При обучении предполагается, что для каждого входного вектора (множества входов) существует парный ему целевой вектор (множество выходов), и вместе они образуют обучающую пару (пример). Перед началом обучения всем весам должны быть присвоены небольшие начальные значения, выбранные случайным образом, для преодтвращения патологических случаев невозможности обучения. Все множество обучающих пар составляет обучающее множество. Обучение сети требует выполнения следующих операций:

  1. выбрать обучающую пару из обучающего множества;
  2. подать входной вектор обучающей пары на вход сети;
  3. вычислить выход сети;
  4. вычислить разность между выходом сети и целевым вектором обучающей пары;
  5. скорректировать веса сети, чтобы минимизировать ошибку;
  6. повторять шаги 1-5 для каждой пары обучающего множества до тех пор, пока ошибка на всем множестве не достигнет допустимого уровня.

Обучение методом обратного распространения ошибки ведется послойно, начиная от выходного слоя, шагами 4 и 5.

Являясь "универсальными аппроксиматорами", персептроны могут обучиться достаточно сложным закономерностям в отличие от регрессионных моделей, в которых вид аппроксимирующей функции подбирается из ограниченного возможного набора. Но эта гибкость имеет и оборотную сторону - количество степеней свободы создаваемой прогностической модели часто превышает число использовавшихся для обучения примеров. Это означает, что нейросеть может "научиться" даже на массиве сгенерированных случайных чисел. И действительно, как показывает применение нейросети для решения тестовой задачи по анализу рынка акций, приведенной в , она прекрасно объясняет все колебания рынка в прошлом, но не дает обоснованного прогноза на будущее. Улучшение прогностической точности обученной сети может быть достигнуто при использовании для обучения нейронной сети только некоторой части обучающего множества, тогда как оставшаяся часть примеров используется для проверки адекватности созданной модели на неизвестных данных; одновременно следует стараться обучить сеть как можно менее сложной конфигурации для уменьшения числа степеней свободы.

Имеется и ряд других недостатков, ограничивающих использование нейронных сетей в качестве инструмента ИАД.

Главной проблемой обучения нейронных сетей является синтез структуры сети, способной обучиться на заданном обучающем множестве. Нет никакой гарантии, что процесс обучения сети определенной структуры не остановится, не достигнув допустимого порога ошибки, или не попадет в локальный минимум. Хотя многослойные сети широко применяются для классификации и аппроксимации функций, их структурные параметры до сих пор должны определяться путем проб и ошибок. Согласно выводам , существующие теоретические результаты дают лишь слабые ориентиры для выбора этих параметров в практических приложениях.

Таким образом, нейронные сети - довольно мощный и гибкий инструмент ИАД - должны применяться с известной осторожностью и подходят не для всех проблем, требующих интеллектуального анализа корпоративных данных.

4.3.3. Выводы

Как видно из сделанного обзора, ни один из рассмотренных методов не способен покрыть все задачи, обеспечивающие поддержку принятия управленческих решений на основе интеллектуального анализа содержимого хранилищ данных. Но большинство существующих на рынке систем интеллектуального анализа реализуют один-три метода (например, Pilot Discovery Server фирмы Pilot Software Inc. и Information Harvester фирмы Information Harvester Corp. - только деревья решений, Idis фирмы Information Discovery Inc. - деревья решений и индукцию правил, Darwin фирмы Thinking Machines - нейронные сети, деревья решений и визуализацию данных , MineSet фирмы Silicon Graphics - деревья решений, индукцию ассоциативных правил и визуализацию данных ), поэтому в реальных приложениях для того, чтобы не потерять большое количество значимых закономерностей, приходится, как правило, пользоваться несколькими разнородными инструментами. Кроме того, многие инструменты не позволяют напрямую работать с хранилищами данных, требуя предварительной подготовки исходных данных для анализа в виде плоских файлов фиксированной структуры, что также затрудняет их практическое использование.

5. Взаимодополняемость OLAP и ИАД

Оперативная аналитическая обработка и интеллектуалный анализ данных - две составные части процесса поддержки принятия решений. Но сегодня большинство систем OLAP заостряет внимание только на обеспечении доступа к многомерным данным, а большинство средств ИАД, работающих в сфере закономерностей, имеют дело с одномерными перспективами данных. Эти два вида анализа должны быть тесно объединены, то есть системы OLAP должны фокусироваться не только на доступе, но и на поиске закономерностей.


Рис. 9. Архитектура системы многомерного интеллектуального анализа данных.

Идеальной целью построения корпоративной информационно-аналитической системы является создание СППР замкнутого цикла. Как заметил N. Raden, "многие компании создали... прекрасные хранилища данных, идеально разложив по полочкам горы неиспользуемой информации, которая сама по себе не обеспечивает ни быстрой, ни достаточно грамотной реакции на рыночные события" [ , С. 39]. В особенно динамичных сферах (например, в розничной торговле), где ситуация меняется ежедневно, своевременное принятие грамотных решений не обеспечивается даже при использовании обычных средств OLAP и ИАД. Они должны быть объединены друг с другом и иметь обратную связь к исходным системам обработки данных, с тем чтобы результаты работы СППР немедленно передавались в виде управляющих воздействий в оперативные системы. Так, крупнейшая американская компания в сфере розничной торговли Wal-Mart занимается разработкой СППР замкнутого цикла от нормализации… По пытки нормализовать любую из таблиц в многомерной базе данных исключительно ради экономии дис кового пространства [именно так!] - напрасная трата времени… Таблицы размерности не должны быть нормализованы… Нормализованные таблицы размерности исключают возможность просмотра".

10 Если только эта таблица результатов не включает какие-либо неопределенные значения, или NULL-значения (см. главу 19, раздел 19.3, подраздел "Дополнительные сведения о предикатах"). На самом деле конструкции SQL: 1999, которые должны быть описаны в данном разделе, можно охаракте ризовать как "основанные на использовании" этого весьма не рекомендуемого средства SQL (?); в дей ствительности, они подчеркивают тот факт, что в своих различных проявлениях неопределенные значе ния могут иметь разный смысл, и поэтому позволяют представить в одной таблице много разных преди катов (как будет показано ниже).

было до появления стандарта SQL: 1999). Поэтому, чтобы реализовать п различных способов группирования, необходимо выполнить п отдельных запросов и создать в результате л отдельных таблиц. Например, рассмотрим приведенную ниже последовательность запросов, выполняемых в базе данных поставщиков и деталей.

1. Определить общее количество поставок.

2. Определить общее количество поставок по поставщикам.

3. Определить общее количество поставок по деталям.

4. Определить общее количество поставок по поставщикам и деталям.

(Безусловно, "общее" количество для данного поставщика и для данной детали - это просто фактическое количество для данного поставщика и данной детали. Пример был бы более реалистичным, если бы использовалась база данных по ставщиков, деталей и проектов. Но, чтобы не усложнять этот пример, мы все же остановились на обычной базе поставщиков и деталей.)

Теперь предположим, что есть только две детали, с номерами Р1 и Р2, а таблица поставок выглядит следующим образом.

Многомерные базы данных

До сих пор предполагалось, что данные OLAP хранятся в обычной базе данных, использующей язык SQL (не считая того, что иногда мы все же касались терминологии и концепции многомерных баз данных). Фактически мы, не указывая явно, описывали так называемую систему ROLAP (Relational OLAP- реляционная OLAP). Однако многие считают, что использование системы MOLAP (Multi-dimensional OLAP - многомерная OLAP) - более перспективный путь. В этом подразделе принципы построения систем MOLAP будут рассмотрены подробнее.

Система MOLAP обеспечивает ведение многомерных баз данных, в которых данные концептуально хранятся в ячейках многомерного массива.

Примечание. Хотя выше и было сказано о концептуальном способе организации хранения, в действительности физическая организация данных в MOLAP очень похожа на их логическую организацию.

Поддерживающая СУБД называется многомерной. В качестве простого примера можно привести трехмерный массив, представляющий, соответственно, товары, заказчиков и периоды времени. Значение каждой отдельной ячейки может представлять общий объем указанного товара, проданного заказчику в указанный период времени. Как отмечалось выше, перекрестные таблицы из предыдущего подраздела также могут считаться такими массивами.

Если имеется достаточно четкое понимание структуры совокупности данных, то могут быть известны и все связи между данными. Более того, переменные такой совокупности (не в смысле обычных языков программирования), грубо говоря, могут быть разделены на зависимые и независимые. В предыдущем примере товар, заказчик и период времени можно считать независимыми переменными, а количество - единственной зависимой переменной. В общем случае независимые переменные - это переменные, значения которых вместе определяют значения зависимых переменных (точно так же, как, если воспользоваться реляционной терминологией, потенциальный ключ является множеством

столбцов, значения которых определяют значения остальных столбцов). Следовательно, независимые переменные задают размерность массива, с помощью которого организуются данные, а также образуют схему адресации11 для данного массива. Значения зависимых переменных, которые представляют фактические данные, сохраняются в ячейках массива.

Примечание. Различие между значениями независимых, или размерных, переменных,

и значениями зависимых, или неразмерных, переменных, иногда характеризуют как различие между местонахождением и содержанием.

" Поэтому ячейки массива адресуются символически, а не с помощью числовых индексов, которые обычно применяются для работы с массивами.

К сожалению, приведенная выше характеристика многомерных баз данных слишком упрощена, поскольку большинство совокупностей данных изначально остаются не изученными в полной мере. По этой причине мы обычно стремимся, в первую очередь, проанализировать данные, чтобы лучше их понять. Часто недостаточное понимание может быть настолько существенным, что заранее невозможно определить, какие переменные являются независимыми, а какие зависимыми. Тогда независимые переменные выбираются согласно текущему представлению о них (т.е. на основании некоторой гипотезы), после чего проверяется результирующий массив для определения того, насколько удачно выбраны независимые переменные (см. раздел 22.7). Подобный подход приводит к тому, что выполняется множество итераций по принципу проб и ошибок. Поэтому система обычно допускает замену размерных и неразмерных переменных, и эту операцию называют сменой осей координат (pivoting). Другие поддерживаемые операции включают транспозицию массива и переупорядочение размерностей. Должен быть также предусмотрен способ добавления размерностей.

Между прочим, из предыдущего описания должно быть ясно, что ячейки массива часто оказываются пустыми (и чем больше размерностей, тем чаще наблюдается такое явление). Иными словами, массивы обычно бывают разреженными. Предположим, например, что товар р не продавался заказчику с в течение всего периода времени t. Тогда ячейка [с,р, t] будет пустой (или в лучшем случае содержать нуль). Многомерные СУБД поддерживают различные методы хранения разреженных массивов в более эффективном, сжатом представлении12. К этому следует добавить, что пустые ячейки соответствуют отсутствующей информации и, следовательно, системам необходимо предоставлять некоторую вычислительную поддержку для пустых ячеек. Такая поддержка действительно обычно имеется, но стиль ее, к сожалению, похож на стиль, принятый в языке SQL. Обратите внимание на тот факт, что если данная ячейка пуста, то информация или не известна, или не была введена, или не применима, или отсутствует в силу других причин

(см. главу 19).

Независимые переменные часто связаны в иерархии, определяющие пути, по которым может происходить агрегирование зависимых данных. Например, существует временная

иерархия, связывающая секунды с минутами, минуты с часами, часы с сутками, сутки с неделями, недели с месяцами, месяцы с годами. Или другой пример: возможна иерархия

композиции, связывающая детали с комплектом деталей, комплекты деталей с узлом, узлы с модулем, модули с изделием. Часто одни и те же данные могут агрегироваться многими разными способами, т.е. одна и та же независимая переменная может принадлежать ко многим различным иерархиям. Система предоставляет операторы для прохождения вверх (drill up) и прохождения вниз (drill down) по такой иерархии. Прохождение вверх означает переход от нижнего уровня агрегирования к верхнему, а прохождение вниз -

переход в противоположном направлении. Для работы с иерархиями имеются и другие операции, например операция для переупорядочения уровней иерархии.

Примечание. Между операциями прохождения вверх (drill up) и накопления итогов (roll

up) есть одно тонкое различие: операция накопления итогов - это операция реализации

12 Обратите внимание на отличие от реляционных систем. В настоящем реляционном аналоге этого примера в строке Ic, p, t) не было бы пустой "ячейки" количества, в связи с тем, что строка (с,р, t) просто бы отсутствовала. Поэтому при использовании реляционной модели, в отличие от многомерных массивов, нет необходимости поддерживать "разреженные массивы", или скорее "разреженные таблицы", а значит, не требуются искусные методы сжатия для работы с такими таблицами.

требуемых способов группирования и агрегирования, а операция прохождения вверх- это операция доступа к результатам реализации этих способов. А примером операции прохождения вниз может служить такой запрос: "Итоговое количество поставок известно; получить итоговые данные для каждого отдельного поставщика". Безусловно, для ответа на этот запрос должны быть доступными (или вычислимыми) данные более детализированных уровней.

В продуктах многомерных баз данных предоставляется также ряд статистических и других математических функций, которые помогают формулировать и проверять гипотезы (т.е. гипотезы, касающиеся предполагаемых связей). Кроме того, предоставляются инструменты визуализации и генерации отчетов, помогающие решать подобные задачи. Но, к сожалению, для многомерных баз данных пока еще нет никакого стандартного языка запросов, хотя ведутся исследования в целях разработки исчисления, на котором мог бы базироваться такой стандарт. Но ничего подобного реляционной теории нормализации, которая могла бы служить научной основой для проектирования многомерных баз данных, пока, к сожалению, нет.

Завершая этот раздел, отметим, что в некоторых продуктах сочетаются оба подхода - ROLAP и MOLAP. Такую гибридную систему OLAP называют HOLAP. Проводятся широкие дискуссии с целью выяснить, какой из этих трех подходов лучше, поэтому стоит и нам попытаться сказать по данному вопросу несколько слов13. В общем случае системы MOLAP обеспечивают более быстрое проведение расчетов, но поддерживают меньшие объемы данных по сравнению с системами ROLAP, т.е. становятся менее эффективными по мере возрастания объемов данных. А системы ROLAP предоставляют более развитые возможности масштабируемости, параллельности и управления по сравнению с аналогичными возможностями систем MOLAP. Кроме того, недавно был дополнен стандарт SQL и в него включены многие статистические и аналитические функции (см. раздел 22.8). Из этого следует, что в настоящее время продукты ROLAP способны к тому же предоставлять расширенные функциональные возможности.

OLAP (Online Analytical Processing – оперативная аналитическая обработка) – это информационный процесс, который дает возможность пользователю запрашивать систему, проводить анализ и т.д. в оперативном режиме (онлайн). Результаты генерируются в течении секунд.

OLAP системы выполнены для конечных пользователей, в то время как OLTP системы делаются для профессиональных пользователей ИС. В OLAP предусмотрены такие действия, как генерация запросов, запросы нерегламентированных отчетов, проведение статистического анализа и построение мультимедийных приложений.

Для обеспечения OLAP необходимо работать с хранилищем данных (или многомерным хранилищем), а также с набором инструментальных средств, обычно с многомерными способностями. Этими средствами могут быть инструментарий запросов, электронные таблицы, средства добычи данных (Data Mining), средства визуализации данных и др.

В основе концепции OLAP лежит принцип многомерного представления данных. Э. Кодд рассмотрел недостатки реляционной модели, в первую очередь указав на невозможность объединять, просматривать и анализировать данные с точки зрения множественности измерений, то есть самым понятным для корпоративных аналитиков способом, и определил общие требования к системам OLAP, расширяющим функциональность реляционных СУБД и включающим многомерный анализ как одну из своих характеристик.

12 правил, которым должен удовлетворять программный продукт класса OLAP. Эти правила:

1. Многомерное концептуальное представление данных.

2. Прозрачность.

3. Доступность.

4. Устойчивая производительность.

5. Клиент – серверная архитектура.

6. Равноправие измерений.

7. Динамическая обработка разреженных матриц.

8. Поддержка многопользовательского режима.

9. Неограниченная поддержка кроссмерных операций.

10. Интуитивное манипулирование данными.

11. Гибкий механизм генерации отчетов.

12. Неограниченное количество измерений и уровней агрегации.

Набор этих требований, послуживший фактическим определением OLAP, следует рассматривать как рекомендательный, а конкретные продукт оценивать по степени приближения к идеально полному соответствию всем требованиям.


Интеллектуальный анализ данных (Data Mining) и знаний (Knowledge Мining). Управление и анализ больших объемов данных (Big data). Системы бизнес-аналитики (Business Intelligence, BI).

Интеллектуальный анализ данных (ИАД) – общий термин для обозначения анализа данных с активным использованием математических методов и алгоритмов (методы оптимизации, генетические алгоритмы, распознавание образов, статистические методы, Data Mining и т.д.), использующих результаты применения методов визуального представления данных.

В общем случае процесс ИАД состоит из трех стадий:

1) выявление закономерностей (свободный поиск);

2) использование выявленных закономерностей для предсказания неизвестных значений (прогнозирование);

3) анализ исключений для выявления и толкования аномалий в найденных закономерностях.

Иногда выделяют промежуточную стадию проверки достоверности найденных закономерностей (стадия валидации) между их нахождением и использованием.

Все методы ИАД по принципу работы с исходными данными подразделяются на две группы:

Методы рассуждений на основе анализа прецедентов – исходные данные могут храниться в явном детализированном виде и непосредственно использоваться для прогнозирования и/или анализа исключений. Недостатком этой группы методов является сложность их использования на больших объемах данных.

Методы выявления и использования формализованных закономерностей, требующие извлечения информации из первичных данных и преобразования ее в некоторые формальные конструкции, вид которых зависит от конкретного метода.

Data Mining (DM)– это технология обнаружения в «сырых» данных ранее неизвестных нетривиальных, практически полезных и доступных интерпретации знаний, необходимых для принятия решений в различных сферах человеческой деятельности. Алгоритмы, используемые в Data Mining, требуют большого количества вычислений, что ранее являлось сдерживающим фактором широкого практического применения этих методов, однако рост производительности современных процессоров снял остроту этой проблемы.

Рынок Business Intelligence состоит из 5 секторов:

1. OLAP-продукты;

2. Инструменты добычи данных;

3. Средства построения Хранилищ и Витрин данных (Data Warehousing);

4. Управленческие информационные системы и приложения;

5. Инструменты конечного пользователя для выполнения запросов и построения отчетов.

В настоящее время среди лидеров корпоративных BI-платформ можно выделить MicroStrategy, Business Objects, Cognos, Hyperion Solutions, Microsoft, Oracle, SAP, SAS Institute и другие (в приложении Б приведен сравнительный анализ некоторых функциональных возможностей BI-систем).

просмотров