Как записывается закон ома для полной цепи. Закон Ома для полной цепи: история и формулы

Как записывается закон ома для полной цепи. Закон Ома для полной цепи: история и формулы

Закон Ома для участка цепи: сила тока I на участке электрической цепи прямо пропорциональна напряжению U на концах участка и обратно пропорциональна его сопротивлению R.

Формула закона: I =. Отсюда запишем формулыU = IR и R = .

Рис.1. Участок цепи Рис.2. Полная цепь

Закон Ома для полной цепи: сила тока I полной электрической цепи равнаЭДС (электродвижущей силе) источника тока Е , деленной на полное сопротивление цепи (R + r). Полное сопротивление цепи равно сумме сопротивлений внешней цепи R и внутреннего r источника тока.Формула закона I =
. На рис. 1 и 2 приведены схемы электрических цепей.

3. Последовательное и параллельное соединение проводников

Проводники в электрических цепях могут соединяться последовательно и параллельно . Смешанное соединение сочетает оба эти соединения.

Сопротивление,при включении которого вместо всех других проводников, находящихся между двумя точками цепи, ток и напряжение остаются неизменными, называют эквивалентным сопротивлением этих проводников.

Последовательное соединение

Последовательным называется соединение, при котором каждый проводник соединяется только с одним предыдущим и одним последующим проводниками.

Как следует из первого правила Кирхгофа , при последовательном соединении проводников сила электрического тока, протекающего по всем проводникам, одинакова (на основании закона сохранения заряда).

1. При последовательном соединении проводников (рис. 1) сила тока во всех проводниках одинакова: I 1 = I 2 = I 3 = I

Рис. 1.Последовательное соединение двух проводников.

2. Согласно закону Ома, напряженияU 1 иU 2 на проводниках равны U 1 = IR 1 , U 2 = IR 2 , U 3 = IR 3 .

Напряжение при последовательном соединении проводников равно сумме напряжений на отдельных участках (проводниках) электрической цепи.

U = U 1 + U 2 + U 3

Позакону Ома, напряжения U 1, U 2 на проводниках равныU 1 = IR 1 , U 2 = IR 2 , В соответствии вторым правилом Кирхгофа напряжение на всем участке:

U = U 1 + U 2 = IR 1 + IR 2 = I(R 1 + R 2 )= I·R. Получаем: R = R 1 + R 2

Общее напряжение U на проводниках равно сумме напряжений U 1 , U 2 , U 3 равно: U = U 1 + U 2 + U 3 = I · (R 1 + R 2 + R 3 ) = IR

где R ЭКВ эквивалентное сопротивление всей цепи. Отсюда: R ЭКВ = R 1 + R 2 + R 3

При последовательном соединении эквивалентное сопротивление цепи равно сумме сопротивлений отдельных участков цепи: R ЭКВ = R 1 + R 2 + R 3 +…

Этот результат справедлив для любого числа последовательно соединенных проводников.

Из закона Омаследует: при равенстве сил тока при последовательном соединении:

I = , I = . Отсюда = или =, т. е. напряжения на отдельных участках цепи прямо пропорциональны сопротивлениям участков.

При последовательном соединении n одинаковых проводников общее напряжение равно произведению напряжению одного U 1 на их количество n :

U ПОСЛЕД = n · U 1 . Аналогично для сопротивлений: R ПОСЛЕД = n · R 1

При размыкании цепи одного из последовательно соединенных потребителей ток исчезает во всей цепи, поэтому последовательное соединение на практике не всегда удобно.

Реферат

Закон Ома. История открытия. Различные виды закона Ома.

1. Общий вид закона Ома.

2. История открытия закона Ома, краткая биография ученого.

3. Виды законов Ома.

Закон Ома устанавливает зависи­мость между силой тока I в проводнике и разностью потенциалов (напряже­нием) U между двумя фиксированными точками (сечениями) этого проводника:

(1) Коэффициент пропорциональности R , завися­щий от геометрических и электрических свойств проводника и от температуры, называется омическим сопротивлением или просто сопротивлением данного участка проводника. Закон Ома был от­крыт в 1826 нем. физиком Г. Омом.

Георг Симон Ом родился 16 марта 1787 года в Эрлангене, в семье потомственного слесаря. После окончания школы Георг поступил в городскую гимназию. Гимназия Эрлангена курировалась университетом. Занятия в гимназии вели четыре профессора. Георг, закончив гимназию, весной 1805 года приступил к изучению математики, физики и философии на философском факультете Эрлангенского университета.

Проучившись три семестра, он принял приглашение занять место учителя математики в частной школе швейцарского городка Готтштадта.

В 1811 году он возвращается в Эрланген, заканчивает университет и получает степень доктора философии. Сразу же по окончании университета ему была предложена должность приват-доцента кафедры математики этого же университета.

В 1812 году Ом был назначен учителем математики и физики школы в Бамберге. В 1817 году он публикует свою первую печатную работу, посвященную методике преподавания "Наиболее оптимальный вариант преподавания геометрии в подготовительных классах". Ом занялся исследованиями электричества. В основу своего электроизмерительного прибора Ом заложил конструкцию крутильных весов Кулона. Результаты своих исследований Ом оформил в виде статьи под названием "Предварительное сообщение о законе, по которому металлы проводят контактное электричество". Статья была опубликована в 1825 году в "Журнале физики и химии", издаваемом Швейггером. Однако выражение, найденное и опубликованное Омом, оказалось неверным, что стало одной из причин его длительного непризнания. Приняв все меры предосторожности, заранее устранив все предполагаемые источники ошибок, Ом приступил к новым измерениям.

Появляется в свет его знаменитая статья "Определение закона, по которому металлы проводят контактное электричество, вместе с наброском теории вольтаического аппарата и мультипликатора Швейггера", вышедшая в 1826 году в "Журнале физики и химии".

В мае 1827 года "Теоретические исследования электрических цепей" объемом в 245 страниц, в которых содержались теперь уже теоретические рассуждения Ома по электрическим цепям. В этой работе ученый предложил характеризовать электрические свойства проводника его сопротивлением и ввел этот термин в научный обиход. Ом нашел более простую формулу для закона участка электрической цепи, не содержащего ЭДС: "Величина тока в гальванической цепи прямо пропорциональна сумме всех напряжений и обратно пропорциональна сумме приведенных длин. При этом общая приведенная длина определяется как сумма всех отдельных приведенных длин для однородных участков, имеющих различную проводимость и различное поперечное сечение".

В 1829 году появляется его статья "Экспериментальное исследование работы электромагнитного мультипликатора", в которой были заложены основы теории электроизмерительных приборов. Здесь же Ом предложил единицу сопротивления, в качестве которой он выбрал сопротивление медной проволоки длиной 1 фут и поперечным сечением в 1 квадратную линию.

В 1830 году появляется новое исследование Ома "Попытка создания приближенной теории униполярной проводимости".

Только в 1841 году работа Ома была переведена на английский язык, в 1847 году - на итальянский, в 1860 году - на французский.

16 февраля 1833 года, через семь лет после выхода из печати статьи, в которой было опубликовано его открытие, Ому предложили место профессора физики во вновь организованной политехнической школе Нюрнберга. Ученый приступает к исследованиям в области акустики. Результаты своих акустических исследований Ом сформулировал в виде закона, получившего впоследствии название акустического закона Ома.

Раньше всех из зарубежных ученых закон Ома признали русские физики Ленц и Якоби. Они помогли и его международному признанию. При участии русских физиков, 5 мая 1842 года Лондонское Королевское общество наградило Ома золотой медалью и избрало своим членом.

В 1845 году его избирают действительным членом Баварской академии наук. В 1849 году ученого приглашают в Мюнхенский университет на должность экстраординарного профессора. В этом же году он назначается хранителем государственного собрания физико-математических приборов с одновременным чтением лекций по физике и математике. В 1852 году Ом получил должность ординарного профессора. Ом скончался 6 июля 1854 года. В 1881 году на электротехническом съезде в Париже ученые единогласно утвердили название единицы сопротивления - 1 Ом.

В общем случае зависимость между I и U нелинейна, однако на практике всегда можно в определенном интервале напряжений считать её линейной и применять закон Ома; для металлов и их сплавов этот интервал практически неограничен.

Закон Ома в форме (1) справедлив для участков цепи, не содержащих источ­ников ЭДС. При наличии таких источников (аккумуляторов, термопар, ге­нераторов и т. д.) закон Ома имеет вид:

(2) - ЭДС всех источников, вклю­чённых в рассматриваемый участок цепи. Для замкнутой цепи закон Ома при­нимает вид: (3) - полное сопротивление цепи, равное сумме внешнего сопротив­ления r и внутреннего сопротивления источника ЭДС. Обобщением закона Ома на случай разветвлённой цепи является правило 2-е Кирхгофа.

Закон Ома можно записать в дифференциальной форме, связывающей в каждой точке проводника плотность тока j с полной напряжённостью электрического поля. Потенциальное. электрическое поле напряжённости Е , создаваемое в проводниках микроскопическими зарядами (электронами, ионами) самих проводников, не может поддерживать стационарное движение свободных зарядов (ток), т. к. работа этого поля на замкнутом пути равна нулю. Ток поддерживается неэлектростатическими силами различного происхождения (индукционного, химического, теплового и т.д.), которые действуют в источниках ЭДС и которые можно представить в виде некоторого эквивалентного непотенциального поля с напряженностью E СТ, называемого сторонним. Полная напряженность поля, действующего внутри проводника на заряды, в общем случае равна E + E СТ . Соответственно, дифференциальный закон Ома имеет вид:

или , (4) - удельное сопротивление материала проводника, а - его удельная электропроводность.

Закон Ома в комплексной форме справедлив также для синусоидальных квазистационарных токов.

Что же собой представляет закон Ома для полной цепи? Итак, это формула, в которой наглядно видна связь основных параметров электрической цепи: тока, напряжения и сопротивления. Для того чтобы понять суть закона, давайте для начала разберемся с некоторыми понятиями.

Что называют электрической цепью?

Электроцепь – это путь в электрической схеме, которым протекают заряды (электрические элементы, провода и другие устройства). Конечно же, ее началом считается источник электропитания. Под воздействием электромагнитного поля, фотонных явлений или химических процессов электрические заряды стремятся перейти на противоположную клемму этого источника электропитания.

Что такое электрический ток?

Направленное движение заряженных частиц при воздействии на них электрического поля либо других сторонних сил и называется электрическим током. Его направление определяется направленностью протонов (положительных зарядов). Ток будет постоянным, если с течением времени не изменилась ни его сила, ни направление.

История закона Ома

При проведении экспериментов с проводником физику Георгу Ому удалось установить, что сила тока пропорциональна напряжению, которое приложено к его концам:

I / sim U или I = G / U,

где G – электропроводность, а величина R = 1 / G – электрическое сопротивление проводника. Это открытие было установлено знаменитым немецким физиком в 1827 году.

Законы Ома

Для полной цепи определение будет следующим: сила тока в электроцепи равна отношению электродвижущей силы (далее ЭДС) источника к сумме сопротивлений:

I = E / (R + r),

где R – сопротивление внешней цепи, а r – внутреннее сопротивление источника тока. Довольно часто формулировка закона вызывает затруднения, поскольку не всем знакомо понятие ЭДС, ее отличие от напряжения, далеко не все знают, что означает и откуда появляется внутреннее сопротивление. Для этого и нужны пояснения, ведь закон Ома для полной цепи имеет глубокий смысл.

Формулировку закона для участка цепи можно назвать прозрачной. Речь идет о том, что для ее понимания не нужны дополнительные разъяснения: ток в цепи прямо пропорционален напряжению и обратно пропорционален сопротивлению:

Смысл

Закон Ома для полной цепи прочно связан с законом сохранения энергии. Давайте предположим, что источник тока не имеет внутреннего сопротивления. Что же в таком случае должно происходить? Оказывается, если бы отсутствовало сопротивление, то во внешнюю цепь отдавался бы ток большей величины, соответственно и мощность была бы большей.

Теперь пришло время разобраться с понятием электродвижущей силы. Эта величина представляет собой разность между электрическими потенциалами на клеммах источника, но только без какой-либо нагрузки. В качестве примера давайте возьмем напор воды в приподнятом баке. Уровень воды будет находиться на месте, пока ее не начнут расходовать. При открытии крана уровень жидкости будет уменьшаться, поскольку нет подкачки. Попадая в трубу, вода испытывает сопротивление, то же самое происходит и с электрическими зарядами в проводе.

При отсутствии нагрузок, клеммы находятся в разомкнутом состоянии, получается, что ЭДС и напряжение совпадают по величине. Если же мы, к примеру, включим лампочку, цепь замкнется, а электродвижущая сила создаст напряжение в ней, выполняя полезную работу. Часть энергии из-за внутреннего сопротивления рассеется (это называют потерями).

В том случае, если сопротивление потребителя меньше внутреннего, то на источнике тока выделяется большая мощность. И тогда происходит падение ЭДС во внешней цепи, а на внутреннем сопротивлении теряется существенная часть энергии. Суть законов сохранения заключается в том, что природа не может взять больше, чем отдать.

Хорошо знакома сущность внутреннего сопротивления обитателям «хрущевок», у которых в квартирах имеются кондиционеры, а старая проводка так и не была заменена. Электрический счетчик вращается с бешеной скоростью, нагревается розетка и стена в тех местах, где проходят старые алюминиевые провода, в результате чего кондиционер еле-еле охлаждает воздух в помещении.

Природа r

«Полный Ом» (как привыкли закон называть электрики) плохо понимается, поскольку у внутреннего сопротивления источника, как правило, не электрическая природа. Давайте разберемся с этим на примере солевой батарейки. Известно, что электрическая батарея состоит из нескольких элементов, мы же будем рассматривать лишь один. Итак, у нас имеется готовая батарея «Крона», состоящая из 7 последовательно соединенных элементов.

Как же происходит выработка тока? В сосуд с электролитом поместим угольный стержень в марганцевой оболочке, состоящий из положительных электродов или анодов. Конкретно в данном примере угольный стержень выступает токосъемником. Металлический цинк составляют отрицательные электроды (катоды). В покупных батарейках, как правило, гелевый электролит. Жидкий используется очень редко. В качестве отрицательного электрода выступает цинковый стаканчик с электролитом и анодами.

Оказывается, секрет батарейки кроется в том, что у марганца электрический потенциал не так высок, как у цинка. Поэтому электроны притягиваются к катоду, а он, в свою очередь, отталкивает положительно заряженные ионы цинка к аноду. В результате катод постепенно расходуется. Пожалуй, каждый знает, что если севшую батарейку своевременно не заменить, то она может потечь. С чем же это связано? Все очень просто: через разъединенный стаканчик начнет вытекать электролит.

При движении зарядов на угольном стержне в марганцевой оболочке накапливаются положительные заряды, в то время как на цинке собираются отрицательные. Поэтому их и называют анодом и катодом, однако внутри батарейки выглядят иначе. Разность между зарядами и создаст электродвижущую силу источника питания. Заряды прекратят движение в электролите, когда разность потенциалов материала электрода приравняется к величине ЭДС, а силы притяжения будут равны силам отталкивания.

Давайте теперь замкнем цепь: для этого достаточно подключить лампочку к батарейке. Проходя через искусственный источник света, заряды будут возвращаться каждый на свое место («дом»), а лампочка загорится. Внутри батарейки снова начнется движение электронов и ионов, поскольку заряды ушли наружу, и снова появилась притягивающая или отталкивающая сила.

На самом деле батарейка вырабатывает ток, почему и светится лампочка, происходит это за счет расхода цинка, превращающегося при этом процессе в иные химические соединения. Для извлечения чистого цинка, согласно закону сохранения энергии, нужно ее затратить, но не в электрическом виде (ровно столько же, сколько было отдано лампочке).

Теперь наконец-то мы можем разобраться с природой внутреннего сопротивления источника. В батарейке – это препятствие движению больших ионов. Движение электронов без ионов невозможно, потому что отсутствует сила притяжения.

В промышленных генераторах r появляется не только из-за электрического сопротивления обмоток, но и за счет внешних причин. Так, к примеру, в гидроэлектростанциях значение величины зависит от КПД турбины, сопротивления тока воды в водоводе, а также от потерь в механической передаче. Кроме того, некоторое влияние оказывает температура воды и то, насколько она заилена.

Переменный ток

Мы уже рассмотрели закон Ома для всей цепи для постоянного тока. Как же изменится формула при переменном токе? Прежде чем мы это узнаем, давайте охарактеризуем само понятие. Переменный ток – это движение электрически заряженных частиц, направление и значение которых изменяется с течением времени. В отличие от постоянного он сопровождается дополнительными факторами, порождающими новый вид сопротивления (реактивного). Свойственно оно конденсаторам и катушкам индуктивности.

Закон Ома для полной цепи для переменного тока имеет вид:

где Z – комплексное сопротивление, состоящее из активных и реактивных.

Не все так плохо

Закон Ома для полной цепи, помимо того что указывает на потери энергии, еще и подсказывает способы их устранения. Обычные электрики редко используют формулу нахождения комплексного сопротивления при наличии в схеме емкостей или индуктивностей. В большинстве случае ток измеряют клещами или специальным тестером. А когда известно напряжение, можно без затруднений вычислить комплексное сопротивление (если это действительно необходимо).



ЗАКОН ОМА
(по имени немецкого физика Г. Ома (1787-1854)) – единица электрического сопротивления. Обозначение Ом . Ом – сопротивление проводника, между концами которого при силе тока 1 А возникает напряжение 1 В .

Закон Ома гласит: Сила тока в однородном участке цепи прямо пропорциональна напряжению, приложенному к участку, и обратно пропорциональна электрическому сопротивлению этого участка.

И записывается формулой:R=U/ I. (Где: I - сила тока (А) , U - напряжение(В), R - сопротивление (Ом) .)

Следует иметь в виду, что закон Ома является фундаментальным (основным) и может быть применён к любой физической системе, в которой действуют потоки частиц или полей, преодолевающие сопротивление. Его можно применять для расчёта гидравлических, пневматических, магнитных, электрических, световых, тепловых потоков и т. д., также, как и Законы Кирхгофа, однако, такое приложение этого закона используется крайне редко в рамках узко специализированных расчётов.

Взаимосвязь между падением напряжения на проводнике, его сопротивлением и силой тока легко запоминается в виде треугольника, в вершинах которого расположены символы U, I, R .

Законы Кирхгофа

Законы Кирхгофа (или правила Кирхгофа) - соотношения, которые выполняются между токами и напряжениями на участках любой электрической цепи. Правила Кирхгофа позволяют рассчитывать любые электрические цепи постоянного и квазистационарного тока. Имеют особое значение в электротехнике из-за своей универсальности, так как пригодны для решения любых электротехнических задач. Применение правил Кирхгофа к цепи позволяет получить систему линейных уравнений относительно токов, и соответственно, найти значение токов на всех ветвях цепи.

Для формулировки законов Кирхгофа, в электрической цепи выделяются узлы - точки соединения трёх и более проводников и контуры - замкнутые пути из проводников. При этом каждый проводник может входить в несколько контуров.
В этом случае законы формулируются следующим образом.

Первый закон (ЗТК, Закон токов Кирхгофа) гласит, что алгебраическая сумма токов в любом узле любой цепи равна нулю (значения вытекающих токов берутся с обратным знаком):

Иными словами, сколько тока втекает в узел, столько из него и вытекает. Данный закон следует из закона сохранения заряда. Если цепь содержит p узлов, то она описывается p − 1 уравнениями токов. Этот закон может применяться и для других физических явлений (к примеру, водяные трубы), где есть закон сохранения величины и поток этой величины.

Второй закон (ЗНК, Закон напряжений Кирхгофа) гласит, что алгебраическая сумма падений напряжений по любому замкнутому контуру цепи равна алгебраической сумме ЭДС, действующих вдоль этого же контура. Если в контуре нет ЭДС, то суммарное падение напряжений равно нулю:

для постоянных напряжений:

для переменных напряжений:

Иными словами, при обходе цепи по контуру, потенциал, изменяясь, возвращается к исходному значению. Если цепь содержит ветвей, из которых содержат источники тока ветви в количестве , то она описывается уравнениями напряжений. Частным случаем второго правила для цепи, состоящей из одного контура, является закон Ома для этой цепи.
Законы Кирхгофа справедливы для линейных и нелинейных цепей при любом характере изменения во времени токов и напряжений.

На этом рисунке для каждого проводника обозначен протекающий по нему ток (буквой «I») и напряжение между соединяемыми им узлами (буквой «U»)

Например, для приведённой на рисунке цепи, в соответствии с первым законом выполняются следующие соотношения:

Обратите внимание, что для каждого узла должно быть выбрано положительное направление, например здесь, токи, втекающие в узел, считаются положительными, а вытекающие - отрицательными.
В соответствии со вторым законом, справедливы соотношения:

Если направление тока совпадает с направлением обхода контура (которое выбирается произвольно), перепад напряжения считается положительным, в противном случае - отрицательным.

Законы Кирхгофа, записанные для узлов и контуров цепи, дают полную систему линейных уравнений, которая позволяет найти все токи и напряжения.

Существует мнение, согласно которому «Законы Кирхгофа» следует именовать «Правилами Кирхгофа», ибо они не отражают фундаментальных сущностей природы (и не являются обобщением большого количества опытных данных), а могут быть выведены из других положений и предположений.

Все законы ома (определения)

[ На измене ]

ЭДС и Закон Ома для полной цепи
Сторонние силы. Для поддержания постоянного тока в проводнике требуется поддерживать постоянную разность потенциалов на его концах. Следовательно, в цепи тока должно находиться устройство, в котором движение зарядов происходит в направлении, противоположном направлению этого движения во внешней цепи (от "минуса" к "плюсу"). Те силы, кроме электростатических, которые действуют на заряды и заставляют их двигаться против сил электрического поля, называются сторонними силами. Если бы этих сил в замкнутой цепи не существовало, то работа по перемещению зарядов по замкнутой цепи только за счет электростатических сил равнялась бы нулю. Однако опыт показывает, что в проводнике с током выделяется определенное количество теплоты. Следовательно, должен существовать источник энергии, поддерживающий ток в цепи и восполняющий убыль энергии на нагревание проводника. Знакомый всем пример устройства, поддерживающего постоянный ток в цепи, - батарейка для карманного фонаря, где сторонними силами являются химические силы.

По определению электродвижущей силой (ЭДС) называется отношение работы сторонних сил Аст по перемещению заряда q к величине этого заряда:

Размерность ЭДС совпадает с размерностью напряжения: [E] = В.

Закон Ома для полной цепи. Любой источник тока обладает, помимо ЭДС, некоторым внутренним сопротивлением r. Полным сопротивлением цепи называют сумму внешнего и внутреннего сопротивлений R + r.

Согласно закону сохранения энергии, в установившемся режиме прохождения постоянного тока выделяющееся в цепи количество теплоты Q = I2RDt + I2rDt должно быть равно работе сторонних сил в источнике тока. Эту работу за время Dt можно записать в виде Аст = Dq = IDt, где Dq = IDt - количество заряда, перенесенного сторонними силами. Из условия Аст = Q находим E= IR + Ir или

Эта формула носит название закона Ома для полной цепи.

Правила Кирхгофа. Если в цепи произвольным образом (последовательно или параллельно) включено несколько ЭДС и несколько резисторов, то для подсчета полной ЭДС, действующей в цепи, и значения силы тока на отдельных участках следует пользоваться cформулированными Г. Кирхгофом правилами. Прежде всего следует уговориться о направлении тока в цепи. По принятому соглашению ток считается положительным, если его направление соответствует направлению движения положительных зарядов. Второе условие: ток всегда направлен от точки с большим потенциалом к точке с меньшим потенциалом. Разность между значениями потенциала в точках до элемента цепи и после этого элемента называется падением напряжения на элементе цепи. Поэтому при прохождении тока через активное сопротивление U = j1 - j2 > 0 и закон Ома запишется в виде: U = IR.

Если в цепи имеется более одного контура (т. е. есть элементы, включенные параллельно) , то можно определить понятие узла - точки соединения нескольких проводников.

Оля семенова

Зако́н О́ма - эмпирический физический закон, определяющий связь электродвижущей силы источника (или электрического напряжения) с силой тока, протекающего в проводнике, и сопротивлением проводника. Установлен Георгом Омом в 1826 году и назван в его

Что такое закон ома

Элман гурбанов

Закон Ома - это физический закон, определяющий связь между напряжением, силой тока и сопротивлением проводника в электрической цепи. Назван в честь его первооткрывателя Георга Ома.
Закон Ома гласит: "Сила тока в однородном участке цепи прямо пропорциональна напряжению, приложенному к участку, и обратно пропорциональна электрическому сопротивлению этого участка".
Закон ОМА записывается формулой: I=U/R,
где: I - сила тока, U - напряжение, R - сопротивление.
Следует иметь в виду, что закон Ома является фундаментальным (основным) и может быть применён к любой физической системе, в которой действуют потоки частиц или полей, преодолевающие сопротивление. Его можно применять для расчёта гидравлических, пневматических, магнитных, электрических, световых, тепловых потоков и т. д. , также, как и Законы Кирхгофа, однако, такое приложение этого закона используется крайне редко в рамках узко специализированных расчётов.

Соединенный проводами с различными электроприборами и потребителями электри-ческой энергии, образует электрическую цепь.

Электрическую цепь принято изображать с помощью схем, в которых элементы электрической цепи (сопротивления , источники тока, включатели, лампы, при-боры и т. д.) обозначены специальными значками.

Направление тока в цепи — это направление от положи-тельного полюса источника тока к отрицательному. Это пра-вило было установлено в XIX в. и с тех пор соблюдается. Перемещение реальных зарядов может не совпадать с ус-ловным направлением тока. Так, в металлах носителями тока являются отрицательно заряжен-ные электроны, и движутся они от отрицательного полюса к положительному, т. е. в обратном направлении. В электролитах реальное перемещение зарядов может совпадать или быть противоположным направлению тока, в зависимости от того, какие ионы являются носителями заря-да — положительные или отрицательные.

Включение элементов в электрическую цепь может быть последовательным или параллельным .

Закон Ома для полной цепи.

Рассмотрим электрическую цепь, состоящую из источника тока и ре-зистора R .

Закон Ома для полной цепи устанавливает связь между силой тока в цепи, ЭДС и полным сопротивлением цепи, состоя-щим из внешнего сопротивления R и внутреннего сопротивления источ-ника тока r .

Работа сторонних сил A ст источника тока, согласно определению ЭДС (ɛ ) равна A ст = ɛq , где q — заряд , перемещенный ЭДС. Согласно определе-нию тока q = It , где t — время, в течение которого переносился заряд. Отсюда имеем:

A ст = ɛ It .

Тепло, выделяемое при совершении работы в цепи, согласно закону Джоуля — Ленца , равно:

Q = I 2 Rt + I 2 rt .

Согласно закону сохранения энергии А = Q . Приравнивая (A ст = ɛ It ) и (Q = I 2 Rt + I 2 rt ), получим:

ɛ = IR + Ir.

Закон Ома для замкнутой цепи обычно записывается в виде:

.

Сила тока в полной цепи равна отношению ЭДС цепи к ее полному сопротивлению.

Если цепь содержит несколько последовательно соединенных ис-точников с ЭДС ɛ 1 , ɛ 2 , ɛ 3 и т. д., то полная ЭДС цепи равна алгебраической сумме ЭДС отдельных источников. Знак ЭДС источника определяется по отношению к направлению обхода контура, который выбирается произвольно, например, на рисунке ниже — против часовой стрелки.

Сторонние силы внутри источника совершают при этом по-ложительную работу . И наоборот, для цепи справедливо следующее уравнение:

ɛ = ɛ 1 + ɛ 2 + ɛ 3 = | ɛ 1 | - | ɛ 2 | -| ɛ 3 | .

В соответствии с сила тока положительна при положительной ЭДС — направление тока во внешней цепи совпадает с направлением обхода контура. Полное сопротивление цепи с несколькими источниками равно сумме внешнего и внутренних сопротивлений всех источников ЭДС, например, для рисунка выше:

R n = R + r 1 + r 2 + r 3 .

Соберем электрическую цепь (рисунок 1, а ), состоящую из аккумулятора 1 напряжением в 2 В, рычажного реостата 2 , двух измерительных приборов – вольтметра 3 и амперметра 4 и соединительных проводов 5 . Установим в цепи при помощи реостата сопротивление, равное 2 Ом. Тогда вольтметр, включенный на зажимы аккумулятора, покажет напряжение в 2 В, а амперметр, включенный последовательно в цепь, покажет ток, равный 1 А. Увеличим напряжение до 4 В путем включения другого аккумулятора (рисунок 1, б ). При том же сопротивлении в цепи – 2 Ом – амперметр покажет уже ток 2 А. Аккумулятор напряжением 6 В изменит показание амперметра до 3 А (рисунок 1, в ). Сведем наши наблюдения в таблицу 1.

Рисунок 1. Изменение тока в электрической цепи путем изменения напряжения при неизменном сопротивлении

Таблица 1

Зависимость тока в цепи от напряжения при неизменном сопротивлении

Отсюда можно сделать вывод, что ток в цепи при постоянном сопротивлении тем больше, чем больше напряжение этой цепи, причем ток будет увеличиваться во столько раз, во сколько раз увеличивается напряжение.

Теперь в такой же цепи поставим аккумулятор с напряжением 2 В и установим при помощи реостата сопротивление в цепи, равное 1 Ом (рисунок 2, а ). Тогда амперметр покажет 2 А. Увеличим реостатом сопротивление до 2 Ом (рисунок 2, б ). Показание амперметра (при том же напряжении цепи) будет уже 1 А.

Рисунок 2. Изменение тока в электрической цепи путем изменения сопротивления при неизменном напряжении

При сопротивлении в цепи 3 Ом (рисунок 2, в ) показание амперметра будет 2/3 А.

Результат опыта сведем в таблицу 2.

Таблица 2

Зависимость тока в цепи от сопротивления при неизменном напряжении

Отсюда следует вывод, что при постоянном напряжении ток в цепи будет тем больше, чем меньше сопротивление этой цепи, причем ток в цепи увеличивается во столько раз, во сколько раз уменьшается сопротивление цепи.

Как показывают опыты, ток на участке цепи прямо пропорционален напряжению на этом участке и обратно пропорционален сопротивлению того же участка. Эта зависимость известна под названием закон Ома.

Если обозначим: I – ток в амперах; U – напряжение в вольтах; r – сопротивление в омах, то закон Ома можно представить формулой:

то есть ток на данном участке цепи равен напряжению на этом участке, деленному на сопротивление того же участка.

Видео 1. Закон Ома для участка цепи

Пример 1. Определить ток, который будет проходить по нити лампы накаливания, если нить имеет неизменное сопротивление 240 Ом, а лампа включена в сеть с напряжением 120 В.

Пользуясь формулой закона Ома, можно определить также напряжение и сопротивление цепи.

U = I × r ,

то есть напряжение цепи равно произведению тока на сопротивление этой цепи и

то есть сопротивление цепи равно напряжению, деленному на ток цепи.

Пример 2. Какое нужно напряжение, чтобы в цепи с сопротивлением 6 Ом протекал ток 20 А?

U = I × r = 20 × 6 = 120 В.

Пример 3. По спирали электрической плитки протекает ток в 5 А. Плитка включена в сеть с напряжением 220 В. Определить сопротивление спирали электрической плитки.

Если в формуле U = I × r ток равен 1 А, а сопротивление 1 Ом, то напряжение будет равно 1 В:

1 В = 1 А × 1 Ом.

Отсюда заключаем: напряжение в 1 В действует в цепи с сопротивлением 1 Ом при токе в 1 А.

На рисунке 3 приведена электрическая цепь, состоящая из аккумулятора, сопротивления r и длинных соединительных проводов, имеющих свое определенное сопротивление.

Как видно из рисунка 3, вольтметр, присоединенный к зажимам аккумулятора, показывает 2 В. Уже в середине линии вольтметр показывает только 1,9 В, а около сопротивления r напряжение равно всего 1,8 В. Такое уменьшение напряжения вдоль цепи между отдельными точками этой цепи называется потерей (падением) напряжения.

Потеря напряжения вдоль электрической цепи происходит потому, что часть приложенного напряжения расходуется на преодоление сопротивления цепи. При этом потеря напряжения на участке цепи будет тем больше, чем больше ток и чем больше сопротивление этого участка цепи. Из закона Ома для участка цепи следует, что потеря напряжения в вольтах на участке цепи равно току в амперах, протекающему по этому участку, умноженному на сопротивление в омах того же участка:

U = I × r .

Пример 4. От генератора, напряжение на зажимах которого 115 В, электроэнергия передается электродвигателю по проводам, сопротивление которых 0,1 Ом. Определить напряжение на зажимах двигателя, если он потребляет ток в 50 А.

Очевидно, что на зажимах двигателя напряжение будет меньше, чем на зажимах генератора, так как в линии будет потеря напряжения. По формуле определяем, что потеря напряжения равна:

U = I × r = 50 × 0,1 = 5 В.

Если в линии потеря напряжения равна 5 В, то напряжение у электродвигателя будет 115 – 5 = 110 В.

Пример 5. Генератор дает напряжение 240 В. Электроэнергия по линии из двух проводов длиной по 350 м, сечением 10 мм² передается к электродвигателю, потребляющему ток в 15 А. Требуется узнать напряжение на зажимах двигателя.

Напряжение на зажимах двигателя будет меньше напряжения генератора на величину потери напряжения в линии. Потеря напряжения в линии U = I × r .

Так как сопротивление r проводов неизвестно, определяем его по формуле:

"); длина l равна 700 м, так как току приходится идти от генератора к двигателю и оттуда обратно к генератору.

Подставляя r в формулу, получим:

U = I × r = 15 × 1,22 = 18,3 В

Следовательно, напряжение на зажимах двигателя будет 240 – 18,3 = 221,7 В

Пример 6. Определить поперечное сечение алюминиевых проводов, которое необходимо применить, чтобы подвести электрическую энергию к двигателю, работающему при напряжении в 120 В и токе в 20 А. Энергия к двигателю будет подаваться от генератора напряжением 127 В по линии длиной 150 м.

Находим допустимую потерю напряжения:

127 – 120 = 7 В.

Сопротивление проводов линии должно быть равно:

Из формулы

определим сечение провода:

где ρ – удельное сопротивление алюминия (таблица 1, в статье "Электрическое сопротивление и проводимость ").

По справочнику выбираем имеющееся сечение 25 мм².
Если ту же линию выполнить медным проводом, то сечение его будет равно:

где ρ – удельное сопротивление меди (таблица 1, в статье "Электрическое сопротивление и проводимость ").

Выбираем сечение 16 мм².

Отметим еще, что иногда приходится умышленно добиваться потери напряжения, чтобы уменьшить величину приложенного напряжения.

Пример 7. Для устойчивого горения электрической дуги требуется ток 10 А при напряжении 40 В. Определить величину добавочного сопротивления, которое нужно включить последовательно с дуговой установкой, чтобы питать ее от сети с напряжением 120 В.

Потеря напряжения в добавочном сопротивлении составит:

120 – 40 = 80 В.

Зная потерю напряжения в добавочном сопротивлении и ток, протекающий через него, можно по закону Ома для участка цепи определить величину этого сопротивления:

При рассмотрении электрической цепи мы до сих пор не принимали в расчет того, что путь тока проходит не только по внешней части цепи, но также и по внутренней части цепи, внутри самого элемента, аккумулятора или другого источника напряжения.

Электрический ток, проходя по внутренней части цепи, преодолевает ее внутреннее сопротивление и потому внутри источника напряжения также происходит падение напряжения.

Следовательно, (э. д. с.) источника электрической энергии идет на покрытие внутренних и внешних потерь напряжения в цепи.

Если обозначить E – электродвижущую силу в вольтах, I – ток в амперах, r – сопротивление внешней цепи в омах, r 0 – сопротивление внутренней цепи в омах, U 0 – внутреннее падение напряжения и U – внешнее падение напряжения цепи, то получим, что

E = U 0 + U = I × r 0 + I × r = I × (r 0 + r ),

Это и есть формула закона Ома для всей (полной) цепи. Словами она читается так: ток в электрической цепи равен электродвижущей силе, деленной на сопротивление всей цепи (сумму внутреннего и внешнего сопротивлений).

Видео 2. Закон Ома для полной цепи

Пример 8. Электродвижущая сила E элемента равна 1,5 В, его внутреннее сопротивление r 0 = 0,3 Ом. Элемент замкнут на сопротивление r = 2,7 Ом. Определить ток в цепи.

Пример 9. Определить э. д. с. элемента E , замкнутого на сопротивление r = 2 Ом, если ток в цепи I = 0,6 А. Внутреннее сопротивление элемента r 0 = 0,5 Ом.

Вольтметр, включенный на зажимы элемента, покажет напряжение на них, равное напряжению сети или падению напряжения во внешней цепи.

U = I × r = 0,6 × 2 = 1,2 В.

Следовательно, часть э. д. с. элемента идет на покрытие внутренних потерь, а остальная часть – 1,2 В отдается в сеть.

Внутреннее падение напряжения

U 0 = I × r 0 = 0,6 × 0,5 = 0,3 В.

Так как E = U 0 + U , то

E = 0,3 + 1,2 =1,5 В

Тот же ответ можно получить, если воспользоваться формулой закона Ома для полной цепи:

E = I × (r 0 + r ) = 0,6 × (0,5 +2) = 1,5 В.

Вольтметр, включенный на зажимы любого источника э. д. с. во время его работы, показывает напряжение на них или напряжение сети. При размыкании электрической цепи ток по ней проходить не будет. Ток не будет проходить также и внутри источника э. д. с., а следовательно, не будет и внутреннего падения напряжения. Поэтому вольтметр при разомкнутой цепи покажет э. д. с. источника электрической энергии.

Таким образом, вольтметр, включенный на зажимы источника э. д. с. показывает:
а) при замкнутой электрической цепи – напряжение сети;
б) при разомкнутой электрической цепи – э. д. с. источника электрической энергии.

Пример 10. Электродвижущая сила элемента 1,8 В. Он замкнут на сопротивление r =2,7 Ом. Ток в цепи равен 0,5 А. Определить внутреннее сопротивление r 0 элемента и внутреннее падение напряжения U 0 .

Так как r = 2,7 Ом, то

r 0 = 3,6 – 2,7 = 0,9 Ом;

U 0 = I × r 0 = 0,5 × 0,9 = 0,45 В.

Из решенных примеров видно, что показание вольтметра, включенного на зажимы источника э. д. с., не остается постоянным при различных условиях работы электрической цепи. При увеличении тока в цепи увеличивается также внутреннее падение напряжения. Поэтому при неизменной э. д. с. на долю внешней сети будет приходиться все меньшее и меньшее напряжение.

В таблице 3 показано, как меняется напряжение электрической цепи (U ) в зависимости от изменения внешнего сопротивления (r ) при неизменных э. д. с. (E ) и внутреннем сопротивлении (r 0) источника энергии.

Таблица 3

Зависимость напряжения цепи от сопротивления r при неизменных э. д. с. и внутреннем сопротивлении r 0

E r 0 r U 0 = I × r 0 U = I × r
2
2
2
0,5
0,5
0,5
2
1
0,5
0,8
1,33
2
0,4
0,67
1
1,6
1,33
1
просмотров