Велоэлектрификация: динамо-машины. Плюсы и минусы различных динамомашин для велосипеда Нарушаются ли Правила в изображенных ситуациях

Велоэлектрификация: динамо-машины. Плюсы и минусы различных динамомашин для велосипеда Нарушаются ли Правила в изображенных ситуациях

Работа динамо-втулки объясняется законом электромагнитной индукции Фарадея . Сводится он к следующему: у вас должно быть (а) магнитное поле и (б) рамка из провода в этом магнитном поле. Теперь, если двигать поле или саму рамку, то в проводе, из которого сделана рамка, наводится электродвижущая сила. Если к проводу теперь подключить нагрузку: резистор, лампочку, фару, конвертер, то потечёт ток, и всё начнёт светиться и работать.


Для иллюстрации закона электромагнитной индукции я взял готовый рисунок. Он не про динамо-втулку, а про другой генератор. Но для понимания принципа действия подходит хорошо. Здесь есть постоянный магнит с двумя полюсами N и S. Между полюсами проходят невидимые линии магнитного поля. И прямо в эти линии поля запихали прямоугольную рамку "Armature" из электрического провода. На концах рамки приделаны два металлических кольца "Slip ring". Графитовые щётки "Brush" скользят по кольцам, когда рамку начинают вращать в магнитном поле. Щётки и кольца обеспечивают протекание тока через рамку и резистор нагрузки "Load".

Со стороны магнитного полюса рамка будет выглядеть неодинаково, как будто у неё меняется площадь, если её вращать. Эта переменная площадь называется "площадь проекции контура рамки на поверхность, перпендикулярную линиям магнитного поля". Ну, или просто "площадь проекции". Во время вращения рамка будет подставляться линиям магнитного поля разными сторонами. От площади проекции зависит величина тока. От того, какой стороной повернётся рамка, зависит направление тока.

Если сделать много оборотов рамки в магнитном поле, потечёт переменный ток. Переменный - это не просто больше или меньше, а ещё и меняющий направление. И магическим образом все эти изменения описываются формулой синуса. Ток оказывается синусоидальным.


Линии магнитного поля направлены от одного полюса к другому. Вращаем рамку. Если мы посмотрим на рамку когда она перпендикулярна линиям магнитного поля, площадь рамки будет максимальна, ток тоже. Вращаем дальше, площадь проекции становится меньше, ток меньше. В момент, когда рамка параллельна линиям магнитного поля ток в ней нулевой. Вращаем дальше - ток меняет направление. Вращаем дальше площадь проекции увеличивается, увеличивается величина тока. И так далее.

Лучше один раз увидеть. :)


Некоторые из вас помнят, что у переменного тока есть такой параметр, как частота. Это как часто ток меняет своё направление. Сколько раз в секунду. Измеряется эта частота в Герцах.

В рассмотренном случае у нас два полюса магнита и за один оборот рамки на 360 градусов ток сменит направление один раз. Если мы провернём рамку на 360 градусов за 1 с, получим частоту нашего тока 1 Гц. Если за 1 секунду сделаем 2 полных оборота на 360 градусов, то получим 2 Гц. Если сделаем 10 оборотов, то 10 Гц. И так далее. Чем быстрее крутим рамку, тем выше частота. Это один из ключевых моментов работы динамо-втулки. Частота переменного тока, который она выдаёт, будет зависеть от вашей скорости и от того, сколько оборотов колесо делает в секунду.
Если у вас низкая скорость и всего пара магнитных полюсов, может получиться очень низкая частота. Настолько низкая, что электроника откажется нормально работать. Фара будет мерзко мерцать, а конвертер перестанет заряжать смартфон.

Поэтому в велосипедных генераторных втулках стремятся увеличить количество полюсов. Если добавить к нашему примеру ещё одну пару полюсов, частота увеличится в два раза.

Увеличение пар полюсов позволяет решить ещё одну проблему. При вращении в магнитном поле по проводнику протекает ток. Этот ток создаёт вокруг себя ещё одно магнитное поле. Это появившееся магнитное поле по правилу Ленца препятствует вращению, которое его вызывает. Ну, нет ничего бесплатного. Возникающий ток и магнитное поле вокруг провода вас постараются притормозить. Если пара полюсов только одна, то это препятствие вращению будет проявляться в виде рывка и будет проявляться вибрациями втулки при езде. Поэтому полюсов делают много, вращение более равномерное, вибраций нет. К тому же, много пар позволяет расположить магниты ближе, плотность магнитного поля будет выше, можно получить больше мощность втулки.

Конструкция

В реальных динамо-втулках пар полюсов просто дофига. Вот, например одна из топовых втулок компании Schmidt Maschinenbau.


И все эти магниты со своими полюсами расположены на корпусе втулки. Проводник, через который проходят линии магнитного поля, расположен на оси. Ось втулки неподвижна и закреплена в велосипедной вилке. Соответственно, неподвижна и рамка электрического проводника. А вращается в этой системе только корпус втулки, к которому через фланцы и спицы приделан обод с покрышкой. Вот, собственно, основное отличие от рассмотренного выше принципа электромагнитной индукции. Там вращали проводник, а тут вращают магнитное поле. Результат одинаковый. Зато неподвижный проводник на оси втулки позволяет получить более простую и надёжную конструкцию втулки, которая не требует обслуживания и замены щёток.

На слайде заметны треугольные блестящие фиговины, а рамку проводника не видно. Чо за дела?

А это потому, что в своей конструкции немцы использовали когтеобразный магнитопровод. Зачем он вообще нужен и почему напоминает когти?

Магнитопровод, как можно догадаться из названия, проводит магнитное поле. И делает он это гораздо лучше, чем воздух. Магниты расположены на корпусе втулки, а рамка проводника - это медный провод, намотанный на бобину. Как катушка ниток. И сидит она на оси втулки. На слайде изображена половина этой катушки и магниты. Линии магнитного поля проходят от одного полюса к другому, и нужно их как-то пропустить через центр катушки. А до него далеко. Магнитопровод как раз позволяет сконцентрировать и замкнуть через себя линии магнитного поля, и пропустить их вдоль оси втулки через катушку с обмоткой. За счёт множества когтей делается это для всех пар полюсов одновременно. И ещё такая форма должна снижать рывки и вибрации при вращении, насколько я понимаю.

Другая топовая втулка немного отличается конструкцией, её выпускает тайваньская компания Shutter Precision.

Основное конструктивное отличие: магниты собраны в магнитный диск "32", а не закреплены по отдельности, как у немцев. Магнитный диск тоже состоит из множества пар полюсов и механически связан с корпусом втулки. Т.е. тут тоже вращается магнитное поле, а не проводник. Проводник в виде катушки "31" сидит неподвижно на оси "21".

Любопытно, что в патенте описана конструкция динамо-втулки с выключателем , которую одно время продавала контора Velo Orange. На корпусе этой втулки был сделан механический переключатель. Во включенном положении магнитный диск прижимался к корпусу втулки, и магнитное поле вращалось, ток генерировался. В выключенном положении, магнитный диск не прижимался к корпусу втулки и не вращался, ничего не генерировалось. Втулка становилась самой обыкновенной. Зачем это сделали? Видимо, чтобы по максимуму снизить потери во втулке, если она не используется. Потому что, даже если вы не питаете от динамо-втулки фару или конвертер, на её вращение потребуется потратить мощности чуть больше, чем на вращение обычной втулки.


На этом слайде видно, как расположены магнитные полюса на диске и как магнитопровод помогает линиям магнитного поля замкнуться через обмотку катушки на оси втулки.


Куча "лепестков" магнитопровода позволяет замкнуть линии магнитного поля всех пар полюсов одновременно. Так же, как и во втулке SON, при вращении к одним и тем же лепесткам магнитопровода будут подходить соседние пары полюсов - то N-S, то S-N. При этом будет меняться направление протекания тока. Частота тут тоже будет высокая.

Характеристики

Конструкции динамо-втулок других производителей плюс-минус одинаковы. Поэтому можно спокойно переходить к характеристикам динамо-втулок. И начать стоит с затрат мощности.
На эту тему есть две толковых публикаци:
Если не открываются, заходите под европейским впном.


На скорости 20 км/ч сферическая передняя втулка в вакууме требует приложить 0.5 Вт мощности. При этом динамо-втулка, к которой ничего не подключено потребует уже 1-2 Вт. А уж если вы к ней подключите фару, то с учётом механических и прочих потерь, вам понадобится прикладывать уже 7 Вт мощности.

Много это или мало, и как повлияет на время вашего движения, можно прикинуть следующим образом.


Если ехать летом, то светло будет часов этак 19.5, а темно только 4.5. Свет вам нужен только в тёмное время, поэтому, если размазать увеличенные затраты мощности в темноте на все сутки, то получим среднее значение 2.5 Вт.

Ездок на длинные дистанции, который крутит целые сутки, производит стабильно 100 Вт мощности. При этом 2.5 Вт затрат из 100 Вт выделяемой мощности, это 2.5 %. Один процент от часа - это 36 секунд. Со средними затратами в 2.5 % он сам себе привезёт 1 минуту 30 секунд на час. Или 36 минут за сутки.

Если вы адовый гонщик и можете целые сутки выдавать 200 Вт, влияние втулки на время будет меньше. Потому что затраты мощности будут уже не 2.5%, а 1.25%, и за сутки набежит 18 минут.

Вы можете сказать: "Да ты офигел! Тридцать шесть минут за сутки это очень много!". Оке, не ставьте тогда динамо-втулку. Но сравните затраты мощности на неё с другими затратами у велосипедиста.

  1. Задание 1 из 15

    1 .

    Нарушаются ли Правила в изображенных ситуациях?

    Правильно

    е) буксировать велосипеды;

    Неправильно

    6. Требования к велосипедистам

    6.6. Велосипедисту запрещается:

    г) во время движения держаться за другое транспортное средство;

    е) буксировать велосипеды;

  2. Задание 2 из 15

    2 .

    Кто из велосипедистов не нарушает правила?

    Правильно

    6. Требования к велосипедистам

    6.6. Велосипедисту запрещается:

    Неправильно

    6. Требования к велосипедистам

    6.6. Велосипедисту запрещается:

    б) двигаться по автомагистралям и дорогам для автомобилей, а также по проезжей части, если рядом обустроена велосипедная дорожка;

  3. Задание 3 из 15

    3 .

    Кто должен уступить дорогу?

    Правильно

    6. Требования к велосипедистам

    Неправильно

    6. Требования к велосипедистам

    6.5. Если велосипедная дорожка пересекает дорогу вне перекрестка, велосипедисты обязаны уступить дорогу другим транспортным средствам, движущимся по дороге.

  4. Задание 4 из 15

    4 .

    Какие грузы разрешается перевозить велосипедисту?

    Правильно

    6. Требования к велосипедистам

    22. Перевозка груза

    Неправильно

    6. Требования к велосипедистам

    6.4. Велосипедист может перевозить только такие грузы, которые не мешают управлять велосипедом и не создают препятствий другим участникам дорожного движения.

    22. Перевозка груза

    22.3. Перевозка груза разрешается при условии, что он:

    б) не нарушает устойчивости транспортного средства и не затрудняет управление им;

  5. Задание 5 из 15

    5 .

    Кто из велосипедистов нарушает Правила при перевозке пассажиров?

    Правильно

    6. Требования к велосипедистам

    6.6. Велосипедисту запрещается:

    Неправильно

    6. Требования к велосипедистам

    6.6. Велосипедисту запрещается:

    д) перевозить пассажиров на велосипеде (за исключением детей до 7 лет, перевозимых на дополнительном сиденье, оборудованном надежно закрепленными подножками);

  6. Задание 6 из 15

    6 .

    В каком порядке проедут перекресток транспортные средства?

    Правильно

    16. Проезд перекрестков


    Неправильно

    16. Проезд перекрестков

    16.11. На перекрестке неравнозначных дорог водитель транспортного средства, движущегося по второстепенной дороге, должен уступить дорогу транспортным средствам, приближающимся к данному перекрестку проезжих частей по главной дороге, независимо от направления их дальнейшего движения.

    16.12. На перекрестке равнозначных дорог водитель нерельсового транспортного средства обязан уступить дорогу транспортным средствам, которые приближаются справа.
    Этим правилом должны руководствоваться между собой и водители трамваев. На любом нерегулируемом перекрестке трамвай, независимо от направления его дальнейшего движения, имеет преимущество перед нерельсовыми транспортными средствами, приближающимися к нему по равнозначной дороге.

    16.14. Если главная дорога на перекрестке изменяет направление, водители транспортных средств, движущихся по ней, должны руководствоваться между собой правилами проезда перекрестков равнозначных дорог.
    Этим правилом должны руководствоваться между собой и водители, движущиеся по второстепенным дорогам.

  7. Задание 7 из 15

    7 .

    Движение на велосипедах по тротуарам и пешеходным дорожкам:

    Правильно

    6. Требования к велосипедистам

    6.6. Велосипедисту запрещается:

    Неправильно

    6. Требования к велосипедистам

    6.6. Велосипедисту запрещается:

    в) двигаться по тротуарам и пешеходным дорожкам (кроме детей до 7 лет на детских велосипедах под присмотром взрослых);

  8. Задание 8 из 15

    8 .

    Кто имеет преимущество при проезде пересечения с велосипедной дорожкой?

    Правильно

    6. Требования к велосипедистам

    6.5. Если велосипедная дорожка пересекает дорогу вне перекрестка, велосипедисты обязаны уступить дорогу другим транспортным средствам, движущимся по дороге.

    Неправильно

    6. Требования к велосипедистам

    6.5. Если велосипедная дорожка пересекает дорогу вне перекрестка, велосипедисты обязаны уступить дорогу другим транспортным средствам, движущимся по дороге.

  9. Задание 9 из 15

    9 .

    Какая дистанция должна быть между группами велосипедистов, движущихся в колонне?

    Правильно

    6. Требования к велосипедистам

    Неправильно

    6. Требования к велосипедистам

    6.3. Велосипедисты, двигаясь группами, должны ехать друг за другом, чтобы не мешать другим участникам дорожного движения. Колонна велосипедистов, движущаяся по проезжей части, должна быть разделена на группы (до 10 велосипедистов в группе) с дистанцией движения между группами 80-100 м.

  10. Задание 10 из 15

    10 .

    Транспортные средства проедут перекресток в следующем порядке

    Правильно

    16. Проезд перекрестков

    16.11. На перекрестке неравнозначных дорог водитель транспортного средства, движущегося по второстепенной дороге, должен уступить дорогу транспортным средствам, приближающимся к данному перекрестку проезжих частей по главной дороге, независимо от направления их дальнейшего движения.

    Неправильно

    16. Проезд перекрестков

    16.11. На перекрестке неравнозначных дорог водитель транспортного средства, движущегося по второстепенной дороге, должен уступить дорогу транспортным средствам, приближающимся к данному перекрестку проезжих частей по главной дороге, независимо от направления их дальнейшего движения.

    16.13. Перед поворотом налево и разворотом водитель нерельсового транспортного средства обязан уступить дорогу трамваю попутного направления, а также транспортным средствам, движущимся по равнозначной дороге во встречном направлении прямо или направо.

  11. Задание 11 из 15

    11 .

    Велосипедист проедет перекрёсток:

    Правильно

    16. Проезд перекрестков

    Неправильно

    8. Регулирование дорожного движения

    8.3. Сигналы регулировщика имеют преимущество перед сигналами светофоров и требованиями дорожных знаков и являются обязательными для выполнения. Сигналы светофоров, кроме желтого мигающего, имеют преимущество перед дорожными знаками приоритета. Водители и пешеходы должны выполнять дополнительные требования регулировщика, даже если они противоречат сигналам светофоров, требованиям дорожных знаков и разметки.

    16. Проезд перекрестков

    16.6. Поворачивая налево или разворачиваясь при зеленом сигнале основного светофора, водитель нерельсового транспортного средства обязан уступить дорогу трамваю попутного направления, а также транспортным средствам, движущимся во встречном направлении прямо или поворачивающим направо. Этим правилом должны руководствоваться между собой и водители трамваев.

  12. Задание 12 из 15

    12 .

    Мигающие красные сигналы данного светофора:

    Правильно

    8. Регулирование дорожного движения

    Неправильно

    8. Регулирование дорожного движения

    8.7.6. Для регулирования движения на железнодорожных переездах используются светофоры с двумя красными сигналами или одним бело-лунным и двумя красными, имеющими следующие значения:

    а) мигающие красные сигналы запрещают движение транспортных средств через переезд;

    б) мигающий бело-лунный сигнал показывает, что сигнализация исправная и не запрещает движения транспортных средств.

    На железнодорожных переездах одновременно с запрещающим сигналом светофора может быть включен звуковой сигнал, дополнительно информирующий участников дорожного движения о запрещении движения через переезд.

  13. Задание 13 из 15

    13 .

    Водитель какого транспортного средства проедет перекресток вторым?

    Правильно

    16. Проезд перекрестков

    16.11. На перекрестке неравнозначных дорог водитель транспортного средства, движущегося по второстепенной дороге, должен уступить дорогу транспортным средствам, приближающимся к данному перекрестку проезжих частей по главной дороге, независимо от направления их дальнейшего движения.

    16.14. Если главная дорога на перекрестке изменяет направление, водители транспортных средств, движущихся по ней, должны руководствоваться между собой правилами проезда перекрестков равнозначных дорог.

    Этим правилом должны руководствоваться между собой и водители, движущиеся по второстепенным дорогам.

    Неправильно

    16. Проезд перекрестков

    16.11. На перекрестке неравнозначных дорог водитель транспортного средства, движущегося по второстепенной дороге, должен уступить дорогу транспортным средствам, приближающимся к данному перекрестку проезжих частей по главной дороге, независимо от направления их дальнейшего движения.

    16.14. Если главная дорога на перекрестке изменяет направление, водители транспортных средств, движущихся по ней, должны руководствоваться между собой правилами проезда перекрестков равнозначных дорог.

    Этим правилом должны руководствоваться между собой и водители, движущиеся по второстепенным дорогам.

    16 Проезд перекрестков

    Неправильно

    8. Регулирование дорожного движения

    8.7.3. Сигналы светофора имеют следующие значения:

    Сигнал в виде стрелки, разрешающий поворот налево, разрешает и разворот, если он не запрещен дорожными знаками.

    Сигнал в виде зеленой стрелки (стрелок) в дополнительной (дополнительных) секции (секциях), включенный вместе с зеленым сигналом светофора, информирует водителя о том, что он имеет преимущество в указанном стрелкой (стрелками) направлении (направлениях) движения перед транспортными средствами, движущимися с других направлений;

    е) красный сигнал, в том числе мигающий, или два красных мигающих сигнала запрещают движение.

    Сигнал в виде зеленой стрелки (стрелок) в дополнительной (дополнительных) секции (секциях) вместе с желтым или красным сигналом светофора информирует водителя о том, что движение разрешается в указанном направлении при условии беспрепятственного пропуска транспортных средств, движущихся с других направлений.

    Стрелка зеленого цвета на табличке, установленной на уровне красного сигнала светофора с вертикальным расположением сигналов, разрешает движение в указанном направлении при включенном красном сигнале светофора с крайней правой полосы движения (или крайней левой полосы движения на дорогах с односторонним движением) при условии предоставления преимущества в движении другим его участникам, движущимся с других направлений на сигнал светофора, разрешающий движение;

    16 Проезд перекрестков

    16.9. Во время движения в направлении стрелки, включенной в дополнительной секции одновременно с желтым или красным сигналом светофора, водитель должен уступить дорогу транспортным средствам, движущимся с других направлений.

    Во время движения в направлении стрелки зеленого цвета на таблице, установленной на уровне красного сигнала светофора с вертикальным расположением сигналов, водитель должен занять крайнюю правую (левую) полосу движения и уступить дорогу транспортным средствам и пешеходам, движущимся с других направлений.

После , думаю, есть необходимость и небольшой обзорчик устроить на предмет «а какие они еще бывают?». В данном обзоре будут представлены только заводские генераторы, (серийные и претендующие на серийность), никаких кустарных устройств рассматривать не планируется.

Бутылочная динамо-машина.

Данный генератор может быть установлен как на заднее колесо, так и на переднее. В последнем случае конструкция может иметь встроенный фонарь (также встречаются устройства с задним фонарем). В конструкции, как правило, предусмотрена защелка-фиксатор, для «отключения» генератора, если это необходимо.

От себя добавлю, что динамо-машина с резиновым роликом , как оказалось, шумит значительно меньше, чем с металлическим, и у нее лучше сцепление с влажной покрышкой.

Динамо-втулка.

Напряжение: 6V
Мощность: 2.4 - 3W

Динамо-втулка - осевая динамо-машина. Внешне устройства бывают довольно разнообразны.
Не самый доступный вариант как по цене, так и по сложности установки. При покупке следует обратить внимание на количество спиц (32\36) и способ крепления (ось\эксцентрик) того колеса, на которое предполагается установка. В отличие от бутылочных машин, данный агрегат не боится осадков: ролик «бутылочки» может проскальзывать по мокрой резине. Во втулке проскальзывать нечему, но и выключить ее не представляется возможным.

Цепная динамо-машина.

Напряжение: 5 V
Заявленная емкость встроенной АКБ: 1000 mAh
Тип батареи: литий-полимерный аккумулятор

Цепная динамо-машина - достаточно экзотический вид генераторов. Встречаются модификации. В устройстве предусмотрен USB контакт, предполагается зарядка, как минимум, телефонов. Но остается открытым вопрос, каким образом данное устройство крепится на мультискоростные велотрансмиссии, и каков срок его службы, ведь велосипедная цепь способна довольно быстро привести в негодность контактирующие с ней пластиковые детали.

BikeCharge light & USB Power Generator.

Напряжение: 5 V
Мощность: 3 W
Заявленная емкость встроенной АКБ: 700mA h
Тип батареи: литий-ионный аккумулятор

В данной конструкции воплощена уже озвученная выше и далеко не новая идея соединения динамо-машины и фонаря. Особенность данной конструкции в том, что она крепится на торец втулки, а рабочее колесо, с которого на генератор подается крутящий момент, фиксируется прямо на спицах. Конструкция снабжена как передним, так и задним фонарем (хотя лично с моей точки зрения задний фонарь лучше сзади располагать), и, благодаря современному USB интерфейсу, позволяет поддерживать работоспособность GPS-навигатора или смартфона. В комплекте имеется пульт-"манетка" для управления лампой (вкл\выкл).

SunUp.

Напряжение: 6-12 V
Мощность: 8 W

Аналогичная предыдущей, но бесфарная конструкция на заднее колесо. В комплекте, как правило, присутствует АКБ, передний и задний фонари, и блок питания\маршрутизатор, с помощью которого можно перенаправить энергию на фонари или к порту USB.
Очевидный, но не фатальный недостаток: SunUp непригодна к использованию на колесах с дисковым тормозом.

Magtenlight.

Крайне любопытная конструкция бесконтактной динамо-машины. По сути дела роль ротора выполняет колесо, на которое крепится «обруч» из 28-ми попеременно-полюсных магнитов, а статором служит, надо полагать, обычная индукционная катушка со встроенным АКБ.

Конкретных сведений о системе обнаружить не удалось, но производители утверждают, что скорости 15 км\ч достаточно для нормальной работы лампы в 100 люмен (CREE Q4 white LED). Теоретически, это недалеко от истины.

Плюсы этой системы:
- отсутствие какого-либо трения, и, как следствие, полная бесшумность в работе;
- срок эксплуатации ограничен лишь качеством встроенной АКБ (что, впрочем исправимо).
К недостаткам можно отнести разве что резерв АКБ - всего 4 минуты, но при наличии кое-каких деталей, познаний в радиотехнике и прямых рук, это несложно исправить.

Генератор, позволяющий получить электрическую энергию благодаря вращению (механической энергии), именуется динамо-машиной. Постоянный ток, ею вырабатываемый, в связи со своими качествами применяется в быту не так часто, как переменный. Все электростанции оснащены гигантскими генераторами переменного тока (альтернаторами). Несмотря на это, динамо-машина остается актуальным приспособлением, которое хорошо служит в некоторых электротехнических областях, например, при зарядке аккумуляторов. Поэтому небольшой генератор, собранный своими руками, всегда найдет себе применение.

Кто изобрел динамо-машину и как она устроена?

В 1831 году английский физик Фарадей обнаружил необычное электромагнитное явление. В медном проводе во время вращения между магнитными полюсами возникало электромагнитное поле. Именно оно возбудило движение электронов по проводнику. На основе исследований физик сформулировал закон электро-магнитной индукции. Проводником служила медная проволока, накрученная на стержень из металла, обладающий магнитным свойством. Когда магнитные частицы в стержне располагались в соответствии с полюсами, он превращался в магнит и притяги-вал к себе металлические предметы. Чтобы намагнитить стержень, можно использовать катушку или постоянный магнит. Эффект возникнет при силь-ном вращении одного электромагнита вокруг другого.

В том же году появился прибор для преобразования электрической энергии в механическую. Первые электродвигатели напоминали паровые машины: только вместо цилиндров устанавливали электромагниты, вместо поршней - металлические якоря.

В 1834 году русский академик Борис Якоби создал первый электродвигатель с вращающимся якорем. Через 4 года академик применил усовершенствованный электромотор на первой в мире моторной лодке. Первый в мире генератор переменного тока был построен Павлом Яблочковым. А поистине революционным стало изобретение другого русского ученого М. Доливо-Довольского - генератор трехфазного тока.

Динамо-машина своими руками, ее элементы

Для того чтобы построить динамо-машину, потребуются такие основные элементы, как корпус, вращающийся якорь, коллектор, щеткодержатель, щетки, медная проволока с изоляцией.

Рассмотрим подготовку каждого элемента в отдельности.

Устройство динамо-машины

  • Корпус

Существуют разные варианты изготовления корпуса. Для него подойдет консервная банка, отрезок трубы (диаметр 100 мм). Во-первых, надо вырезать дно банки и утяжелить корпус. Для этого с внутренней или наружной стороны банки очень плотно в несколько рядов навернем полоску из железа такой же ширины. Затем приклепываем или припаиваем полоску к корпусу.

Во-вторых, из жести или железа изготавливаем сердечники для электромагнитов и башмаки для них. Берем полоски жести по ширине корпуса, изгибаем, накладываем друг на друга, скрепляем железной проволокой и припаиваем их по бортам. К отверстиям в корпусе, расположенным напротив друг друга, крепим сердечники.

С помощью шурупов приворачиваем корпус к колодке (деревянной или металлической). В корпусе делаем две подшипниковых полоски (латунь или толстая жесть, размер 110х20 мм) и стойку (80х20 мм) для закрепления якоря. Полоски спаиваем крестом, в центре делаем отверстие по диаметру оси. Такое же отверстие в стойке в 10 мм от конца. В отверстия подшипников можно впаять медные трубочки (10-15 мм с диаметром 8 мм). К корпусу первый подшипник припаиваем концами полос, после система выгнется наружу.

  • Вращающийся якорь

Изготавливать якорь надо тщательно, так как от него во многом зависит, как будет работать динамо-машина. Можно собрать якорь из жестяных пластин. Толщина всех пластин должна быть равна толщине корпуса (50 мм), при их изготовлении требуется особая точность. Из железа придется вырезать примерно 120 кругов (по 46 мм в диаметре). Каждый круг делим на восемь секторов с помощью циркуля, делаем разметку через центр круга, в центре кругов проводим по две окружности диаметром 8 и 38 мм. На пересечении большой окружности с линиями секторов проводим еще круги по 8 мм. На всех круглых пластинах, там, где расчертили окружности, с точностью просверливаем восемь отверстий по 8 мм.

Плотно скрепляем пластины гайками и надеваем на ось, должен получиться якорь с круглыми продольными пазами. Острые углы в пазах закругляем напильником.

Изготовление коллектора и щеткодержателя

При сборке динамо-машины, в частности коллектора и щеткодержателей, требуется внимание и аккуратность.

  • Коллектор

Коллектор можно изготовить из трубки (медь, латунь) или собрать из пластин. Потребуется трубка диаметром 20-25 мм и длиной 25—30 мм, которая распиливается на 4 равные части. В пластинах просверливаются по два двухмиллиметровых отверстия.

Затем вырезаем цилиндр (диаметр 20-25 мм, длина 25 мм) из фибры или эбонита, подойдет и сухое дерево. В центре цилиндра делаем отверстие, чтобы он плотно мог войти на ось якоря. Пластинки крепим к цилиндру с помощью мелких шурупов, каждый раз оставляя между ними пространство в 1-2 мм. Можно использовать скрутки из проволоки и изоляционную ленту. Шурупы не должны касаться оси, иначе будет замыкание. Зазоры между пластинами заполняем канифолью.

  • Щеткодержатель и щетки

Щеткодержатель со щетками применяется для снятия напряжения в коллекторе. Щетки должны выдвигаться и поворачиваться вокруг оси якоря, чтобы менять силу и угол нажима на коллектор. Основание толщиной 10 мм изготовим из фибры, эбонита или пропарафиненного дерева. Просверлим в нем три отверстия, чтобы для двух крайних подошли болты. Берем болты из меди или радиоконтакты по 35 мм. Болтики, закрепляющие щетки, вкручиваем с гайками для зажима.

Отверстие в центре должно быть равно диаметру трубки из меди, которая использовалась для первого подшипника в корпусе. Напротив центрального отверстия в торце колодки просверливаем сквозное отверстие и делаем нарезку под крепящий винт. Берем винт (для дерева - шуруп) с прорезью или гранями на головке. Делаем отверстие чуть меньше диаметра винта, вворачиваем винт. Сначала на 2-3 оборота ввернуть, потом вывернуть, повторяя до тех пор, пока он не будет свободно входить на три оборота. Затем точно также винтом обрабатываем следующий проход.

Делаем подшипниковую стойку, в верхнем конце которой просверливаем отверстие, вставляем отрезок медной трубки и припаиваем. Щетки можно сделать разными способами, из медных, латунных пластин или приготовить угольные щетки. Это могут быть пластины длиной 40-50 мм с сечением 10-15 мм. На конце щетки просверливаем продолговатое сквозное отверстие длиной 20 мм под болтики. Такое отверстие позволит менять нажим, приближая щетки к коллектору. Крепим щетки шайбами. Чтобы щетки плотно касались коллектора, затачиваем их концы наискось.

Обмотка

Для обмотки будем использовать медную проволоку с бумажной изоляцией сечением 0,5-0,8 мм. Необходимо приобрести полкилограмма проволоки, толщина которой будет влиять на напряжение и силу тока. Например, при обмотке проволокой 0,5 мм будет вырабатываться 25 вольт при силе тока в 1 ампер, если взять проволоку 0,8 - 8 вольт при силе в 3 ампера. Перед началом работ проволоку делим на две части. Для обмотки электромагнита потребуется 450 г провода 0,5 и 60 г для обмотки якоря. Если купили проволоку 0,8, для электромагнита отложим 430 г, а для якоря - 70 г.

Сборка динамо

Динамо-машина своими руками собирается в несколько этапов:

  1. Для основания подготовим доску размером 150х200 мм, толщиной 30 мм. Просверлим два отверстия с краев кольца электромагнитов.
  2. Крепим корпус к основанию двумя шурупами так, чтобы электро-магниты расположились на одной горизонтальной линии напротив друг друга.
  3. К бо-кам корпуса, чтобы он прочно сидел, подкладываем деревянные брусочки и привинчиваем их к основанию.
  4. Затем через подшипник на корпусе пропускаем свободный конец оси якоря. Вставляем его на место между электромагнитами.
  5. На подшипник подшипниковой стойки с внутрен-ней стороны надеваем щеткодержатель со щетками и вставляем конец оси якоря с коллектором. На коллектор предварительно должна быть надета толстая металли-ческая шайба или кольцо из проволоки.
  6. Устанавливаем якорь так, чтобы он при вращении между электромагнитами, не задевал их и находился от них на одном расстоянии. Стойка крепится на основание двумя шурупами.

Регулировка динамо-машины

  • Закрепляем щетки так, чтобы они слегка касались коллектора и сильно не затормаживали его вра-щение.
  • Проверим правильность соединений, отсутствие обрывов и замыканий. Подключаем к механизму батарею в 15-20 вольт. Если мотор работает, якорь быстро вращается, значит, динамо-машина своими руками собрана правильно.
  • После проверки динамо-машину соединяем с при-водом, например от ножной швейной машины. К щеткам присоединяем напря-жение от батареи в 10 вольт, чтобы намагнитить электромагниты. Через минуту батарея должна отключиться, тогда начинаем быстро вращать якорь с помощью привода. К проводам от щеток подключаем вольтметр или лампу в 12 вольт. Если все собрано правильно, вольтметр будет показывать напряжение, а лампочка - накаливаться.
  • С помощью равномерного вращения якоря надо слегка повернуть щеткодержатель в сторону вращения якоря, тогда щетки будут меньше искрить и лучше снимать напряжение. Опытным путем отрегулируем установку щеток.

Динамо-машина для велосипеда

Небольшой генератор для велосипеда устанавливается на боковой стенке покрышки. Он позволяет заряжать аккумуляторы мобильников, приемников и других устройств, зажигает фары. Бутылочная динамо-машина называется еще и боковым динамо. При езде покрышка приводит в движение ролик динамо, вращающий электрогенератор.

Для велосипедного генератора можно взять динамо-втулку, динамо-каретку. Подойдет и бесконтактная динамо-машина. Телефон она сможет зарядить вполне успешно.

  • Бутылочный генератор во время работы создает сопротивление при езде и требует больше усилий для прокручивания, чем динамо-втулка. Правильная регулировка поможет уменьшить сопротивление.
  • Бутылочная динамо-машина для велосипеда изнашивает покрышку в отличие от динамо-втулки.
  • При влажности ролик динамо-бутылки возможно будет проскальзывать по покрышке, что существенно снизит количество вырабатываемой энергии.
  • Для динамо-втулки не требуется хорошее сцепление и герметизация. Они не издают шума в отличие от динамо-машин.

Эксплуатация динамо-машины для велосипеда

Тщательная установка динамо очень важна, при этом надо учесть угол, высоту и давление. Для запуска велосипедная динамо-машина бутылочного типа перемещается и подсоединяется, а динамо-втулка просто включается вручную или автоматически.

Эксплуатировать динамо надо строго по инструкции.

  1. Перед тем, как крутить педали, проверяем вольтметр. Он должен показывать напряжение (12-13).
  2. Выбираем режим низкой мощности, включаем генератор, должна загореться лампочка индикатора.
  3. Крутим педали, постепенно увеличивая скорость, до включения генератора. Лампочка погасла, на вольтметре значение 13-14. Крутить педали надо быстро, чтобы схема могла поддерживать мощность.
  4. Вело динамо-машина работает более эффективно при высокой мощности. При тяжелых нагрузках лучше запускать генератор на низкой мощности, а после отключения нагрузки переключить на высокую.

Динамо-зарядник

В полевых условиях всегда пригодится простая «крутилка», динамо-машина для зарядки телефона. Актуальными являются зарядники со встроенным аккумулятором. Встречаются механические зарядники, также не занимающие много места. Многие современные «крутилки» снабжены фонариками.

Данные устройства вполне успешно заряжают мобильные телефоны. Например, при вращении ручки 2-3 оборота в секунду можно получить значение коэффициента от 0.65 до 2.5. Пару минут покрутил и можно говорить по телефону от 2 до 5 минут. Все зависит от модели и условий приема. Ручная динамо-машина не сможет снабжать мощный смартфон с большим дисплеем. Механическая зарядка обеспечит результат в связке с простым телефоном вместе с гарнитурой hands-free.

Зарядка динамо-машина сработает результативно при полностью разрядившемся аккумуляторе, но повысить заряд телефона кручением рукоятки можно только до 50%. Когда аккумулятор разряжен только наполовину, «крутилка» становится бесполезной игрушкой. Если в инструкции указан максимальный ток зарядки - 400 mA с мощностью 2 Вт, то дополнительную энергию выжать не удастся даже при быстром вращении рукоятки.

Мощный генератор своими руками

Мощный генератор электроэнергии можно собрать, используя старый велосипед без восьмерок на заднем колесе. Подойдет 28-дюймовое колесо и передняя звездочка на 52 зуба, но возможны и другие варианты, например, 26-дюймовое и звездочка на 46 зубов. В первую очередь снимаем ненужные детали: переднее колесо, покрышки, переключатель передач, тормоза. Устанавливаем велосипед на подставку.

Генератор должен быть автономным с двумя большими клеммами и одной маленькой. Две большие клеммы соединяем вместе, образуя плюс, а маленькую - с индикаторной лампочкой. Клемму заземления соединяем с корпусом (минус). Чистим генератор, снимаем с него вентилятор охлаждения. Закрепляем генератор на кронштейне за сидением, шпиндель должен находиться снаружи на 10-12 см от обода. Подбираем ремень, желательно зубчатый, окружностью примерно 82 дюйма. Для колес по 26 дюймов подойдут ремни A78, а для 27-дюймовых колес - A80.

Для регулировки натяжения генератора переменного тока используем натяжитель пружинного типа. Ремень не надо затягивать сильно, так как вращающий момент довольно низок. На руль закрепляем вольтметр, выключатель и лампочку. Если в доме есть дети, необходимо защитить движущиеся частям механизма, чтобы исключить возможность травматизма.

Во-первых это готовый генератор переменного тока, который предназначен для работы в качестве втулки велосипедного колеса, вырабатывающей электроэнергию для фары, а это означает что он тихоходен, так-как колесо велосипеда при езде крутится максимум до 300бо/м. На номинальную мощность динамо-втулка выходит при скорости около 15км/ч, а начинает давать ток практически с нулевых оборотов 5-7км/ч.

Особенность этого генератора в том, что здесь вращается не вал (ротор), а корпус (статор), но в этом есть даже некоторые преимущества, так- как крепить можно одним болтом за вал, а лопасти прямо на корпус. Так-же вес динамо-втулки всего порядка 400гр.

Изначально динамо-втулка выдает переменное напряжение, но для зарядки аккумуляторов нужно постоянное напряжение, поэтому можно даже без применения паяльника собрать диодный мост, он выпрямляет напряжение.

Покрутив динамо-втулку я удивился на сколько большое напряжение она может давать, при номинальных 6вольт оказывается ее от руки легко можно раскрутить до 30-ти вольт, а это значит что ей можно заряжать не только два-три пальчиковых аккумулятора, но и АКБ 12вольт, и даже 24 вольта, что мною было проверено на практике. А вот сила тока максимальная 520мА. , после этого порога конкретно в моей динамо-втулке срабатывает внутренняя защита и питание отключается до тех пор пока сила тока не упадет. Это вероятно сделано для того чтобы не перегорала лампочка в фаре на больших скоростях движения велосипеда. На фото таблица прокрутки динамо-втулки на различных оборотах.


>

Кстати, не бойтесь заряжать от этой динамки аккумуляторы, большое напряжение им не повредит, они его выровняют до своего. Например если крутить динамку хоть до 30-ти вольт и подсоединить АКБ 12вольт, то напряжение сразу упадет до 12-ти вольт и будет постепенно расти по мере зарядки до 13вольт, по достижению 14вольт аккумулятор следует отключить, чтобы не пере зарядить, это вредно, хотя у генератора слабый ток, но все-же.

Динамо-втулка это однофазный генератор на постоянных магнитах, из-за того что он однофазный у него есть существенные минусы, такие как большое залипание, которое не дает маленьким винтам стартовать на малом ветру, и гудение и вибрации по мачте во время работы. Поэтому я к этому генератору делал большой винт, диаметром 1.6м. А мачту я сначало поставил к своему дачному домику, но вибрации от генератора предавались по мачте и отдавали гудением в домике, будто рядом где-то машина едет, и я перенес мачту от домика по дальше. Эта вибрация присуща всем однофазникам на постоянных магнитах, таких как шаговые и втулки динамо и подобные, и это самый существенный минус для меня, а вот к примеру трехфазные генераторы лишены этого недостатка, поэтому в будущем я делал именно их.


>
На фото я примерно нарисовал основные части ветрогенератора и способ крепления генератора, этот рисунок с моего другого сайта (Отшельники, жизнь в глуши). Ветрогенератор собирал как походный, чтобы можно было легко транспортировать в рюкзаке и легко установить на стоянке, и заряжать все что нужно. На фото виден провод от ветряка, потом преобразователь (диодный мост, чтобы напряжение выпрямить), контроллер, который я сделал из зарядника от телефона, но им так и не пользовался, а заряжал аккумуляторы просто контролируя время от времени напряжение мультиметром.

Вывод, динамо втулка хороший генератор для микро ветряка, и не только, так-же из нее получится хорошая ручная зарядка для маленьких акб и телефона. Так-же легкая и удобная, мне по крайней мере не было жаль потраченных на нее денег, и плюс к тому начальный опыт по построению ветряков.

просмотров