Частотомер на attiny2313 с электрической принципиальной схемой. Самодельный частотомер на ATTINY2313

Частотомер на attiny2313 с электрической принципиальной схемой. Самодельный частотомер на ATTINY2313

Этот самодельный частотомер на ATTINY2313 предназначен для измерения частоты в диапазоне примерно от 4МГц до более 160МГц. Его можно использовать как измеритель частот или в качестве устройства ввода-вывода TRX, например, на диапазон 144МГц (2м).

Технические характеристики частотомера:

  • измерение частоты в диапазоне 4-160 Мгц
  • отображение измерений на ЖК-дисплее
  • чувствительность 700мВ
  • входное напряжение, макс < 30В
  • питание: 8-15В
  • очень простая плата, минимальное количество
    элементов, быстрый запуск
  • размеры платы: 37х80мм

Схема прекрасно отработала в диапазоне от 3,8МГц до 162МГц. Основой схемы является микроконтроллер ATTINY2313. Его преимуществом является возможность работать на частотах до 20МГц. В схеме использован кварц на 16МГц, таким образом, сам процессор теоретически должен правильно измерять частоты до 8МГц.

Зачастую оказывается, что диапазон до 8МГц слишком мал. Увеличение верхнего диапазона можно получить, используя делитель частоты (прескалер). В схеме задействован прескалер LB3500, который позволяет измерять до 150 Мгц.

Краткая информация о LB3500:

  • напряжение питания — 4,5…5,5В
  • потребляемый ток — l6мА-24мА
  • входное напряжение — 100мВ-600мВ
  • выходное напряжение — 0,9 Vpp
  • делитель — 8

Без применения дополнительного делителя схема способна измерять частоты до 64МГц. Добавление дополнительного делителя в виде двоичного счетчика 74LS293 (ICl) позволяет увеличить диапазон измерений до 150 Мгц (макс. для LB3500).

ICl делит частоту на 4. Таким образом, вся система прескалера (ICl и IC4) делит входную частоту на 32. Транзистор Tl с элементами C7, R2, R3 обеспечивает высокое входное сопротивление.

Входной сигнал после разделения попадает на вход микросхемы LB3500. На выходе в 9 IC4 сигнал получается в 8 раз меньшей частоты, чем на входе. К сожалению, выходной сигнал микросхемы LB3500 не согласовывается с TTL уровнями. Для устранения этого недостатка в схему добавлен транзистор Т2, который предназначен для согласования. Потенциометр PRI обеспечивает точное соответствие.

Особенностью первой схемы частотомера на микроконтроллере AVR является то, что она работает вместе с компьютером и подсоединена к материнской плате через разъем IRDA. От этого же разъема конструкция получает питание. Вторая схема частотомера базируется на микроконтроллере Attiny2313 и способна измерять частоту до 10 мГц. Третья рассмотренная конструкция частотомера построена на базе легендарной платы Arduino, основа которой также микроконтроллер AVR.

Схема частотомера состоит из микропроцессора Attiny2313 и двоичного счетчика 74AC161. Входящий сигнал для усиления следует на транзистор VT1, затем с его коллекторного вывода он поступает на вход «С» двоичного счётчика. Контроль за работой счетчика закреплен за МК Attiny2313, который осуществляет обнуление, останавливает или запускает счет путем подачи управляющего сигнала на десятый вывод.


Непродолжительной подачей логического нуля на вход сброса двоичного счётчика, МК обнуляет его, а после этого, отправляет уровень логической единицы на входе ЕР, запускает его работу. Затем, он считает импульсы с выхода старшего разряда счетчика в течение полусекунды.

Частотомер на микроконтроллере AVR. Сигналы данных на компьютер идут с порта PD6 Attiny2313. Линия порта РВ1 используется для сигналов синхронизации следующие от компьютера.

В начальный момент времени МК генерирует стартовый импульс продолжительностью около 1,6 мкс после чего идет пауза. Программа время от времени обращается к порту 2F8H и при регистрации байта, инициирует передачу синхроимпульсов. Данные синхроимпульсы пойдут при отправке числа ноль в инфракрасный порт компьютера. Состав импульсов: Первый бит стартовый и 8 бит число ноль.

При обнаружении уровня логической единицы, микроконтроллер начинает передачу, отправляя 1-й стартовый импульс устанавливая логическую единицу на линии данных и дожидается спада по линии синхронизации, для того чтобы было можно отправить импульсы данных. Если бит данных нулевой, то выставляется "1" .

Так как скорости передачи и приёма одинаковы, это позволяет получить независимость от заданной скорости ИК порта компьютера.

Фъюзы для программы Ponyprog и сама прошивка доступна по зеленой ссылке чуть выше.

В этом простом проекте частотомера, контроллер Arduino считывает напряжение, затем высчитывает его частоту и посылает данные через USB UART в компьютер, на котором необходимо установить программу считывания и визуализации данных, приложение и скетч в архиве для скачки.

Плата Arduino генерирует точную односекундную временную основу для счетчика с помощью каскадирования двух таймеров timer0 и timer2. Связь между цифровыми входами 3 и 4 соединяет выход таймера 2 (250 Гц) со входом таймера 0. Программный код ожидает, когда выход таймера 0 станет положительным, и начинает отсчет частоты входного сигнала таймером 1. Timer1 – это 16-разрядный таймер, он переполняется при достижении значения 2 16 , после этого, изменяется значение регистра переполнения overF. В конце первой секунды записывается 16-разрядный регистр. Затем Arduino отправляет на ПК 6 байтов данных. Схема подключения к Arduino простая, и ее можно,посмотреть на фото ниже.

Сначала Arduino необходимо подсоединить к компьютеру, а только потом запустить приложение на Visual Basc 6. Приложение ищет Com-порт, отправляя байты и ожидает их обратное принятие. Это занимает пару секунд. Приложение должно быть обязательно отключено, в тот момент когда вы прошиваете плату через Arduino IDE. Частотный вход платы Ардуино представляет собой уровни сигнала TTL, при слабом сигнале необходимо добавить усилитель.

Частотомер с хорошими характеристиками, позволяющий измерять частоты от 1Гц до 10 МГц (9,999,999) с разрешением в 1 Гц во всем диапазоне. Идеален для функиональных генераторов, цифровых шкал или как отдельное устройство. Дешев и легок в изготовлении, собран из доступных деталей, имет небольшой размер и может быть смонтирован на панели многих устройств.

Схема состоит из семи 7-сегментных индикаторов, AVR ATtiny2313 и нескольких транзисторов и резисторов. AVR делает всю работу, и дополнительные микросхемы не нужны. Микроконтроллер считает количество импульсов, пришедших на его вход за 1 секунду и отображает это число. Сама важная вещь - это очень точный таймер, и он реализован на 16-битном Timer1 в режиме CTC. Второе, 8-битный счетчик работает как Counter0 и считает импульсы на входе T0. Каждые 256 импульсов он вызывает прерывание, в котором программа увеличивает множитель. Когда мы получаем 1-секундное прерывание, содержимое множителя умножается на 256 (сдвиг влево на 8 бит). Остаток импульсов, которые посчитал счетчик записывается в регистр и добавляется к результату умножения. Это значение затем разбивается на отдельные цифры, которые отображаются на индикаторах. После этого, перед выходом из 1-секундного прерывания, оба счетчика одновременно сбрасываются и измерение начинается заново. В свободное от прерывания время контроллер занимается динамической индикацией.

Разрешение и точность:
Точность зависит от тактового генератора. Кварц должен быть хорошего качества и иметь как можно меньший ppm (допуск). Будет лучше, если частота будет кратна 1024, например, 16 МГц или 22.1184 МГц. Для измерения частоты до 10 МГц, надо использовать кварц не меньше, чем на 21 МГц, например, 22.1184 МГц. Частотомер может измерять частоту до 47% от частоты собственного кварца. Если есть хороший промышленный частотомер, то можно откалибровать схему добавлением подстроечного конденсатора (1пФ-10пФ) между одним из выводов кварца и землей, и подстроить частоту в соответствии с показаниями промушленного частотомера.

В архиве с исходниками есть несколько вариантов под разные кварцы, но вы можете скомпилировать свой вариант.

Форма сигнала:
В принципе, устройство понимает любую форму сигнала от 0 до 5V, не только прямоугольные импульсы. Синусоида и теугольные импульсы сичтаются по заднему фрону при переходе его ниже 0.8V.

В устройстве нет защиты от превышения входного напряжения выше 5 вольт.

Устройство имеет высокоомный вход и не нагружает тестируемую схему – вы даже можете измерить частоту переменного тока в сети 220 вольт, прикоснувшись ко входу пальцем. Частотомер может быть переделан для измерения частоты до 100 МГц с шагом 10 Гц путем добавления на вход быстродействующего делителя.

Дисплей:
Использовано семь семисегментных индикаторов с общим анодом в режиме динамической индикации. Если яркость получается недостаточной, можно уменьшить значения токоограничивающих резисторов, но нужно помнить, что максимальный импульсный ток каждого вывода микроконтроллера составляет 40 мA . По умолчанию сопротивление резисторов 100 Ом. Незначащие нули гасятся програмно. Значения обновляются каждую секунду.

Печатная плата:
Двусторонняя печатная плата размером 109mm x 23mm – к сожалению, 7 индикаторов не влезли в рабочее пространство бесплатной версии Eagle, поэтому они нарисованы от руки. На плате нужно сделать 3 соединения проводом - первое - соединение питания и вывода VCC контроллера – это соединение показано на слое silkscreen. Два других соединяют десятичные точки индикаторов с резисторами на 330 Ом расположенными на слое bottom. Сверху платы расположен коннектор Atmel ISP-6. Контакт 1 первый со стороны кварца. Этот коннектор необязателен и нужен только для программирования контроллера. Индикаторы должны припаиваться на некотором расстоянии от платы, чтобы можно было подлезть паяльником к выводам, припаиваемым с верхней стороны платы.

Построенный . Он позволяет измерять частоты до 10 МГц в четырех автоматически переключаемых диапазонах. Наименьший диапазон имеет разрешение 1 Гц.

Технические характеристики частотомера

  • Диапазон 1: 9,999 кГц, разрешение 1 Гц.
  • Диапазон 2: 99,99 кГц, разрешение до 10 Гц.
  • Диапазон 3: 999.9 кГц, разрешение до 100 Гц.
  • Диапазон 4: 9999 кГц, разрешение до 1 кГц.

Описание частотомера на микроконтроллере

Микроконтроллер Attiny2313 работает от внешнего кварцевого генератора с тактовой частотой 20 МГц (это максимально допустимая частота). Точность измерения частотомера определяется точностью данного кварца. Минимальная длина полупериода измеряемого сигнала должна быть больше, чем период кварцевого генератора (это связано с ограничениями архитектуры микроконтроллера ATtiny2313). Следовательно, 50 процентов от тактовой частоты генератора составляет 10 МГц (это максимальное значение измеряемой частоты).

Установка фьюзов (в PonyProg):

На разработку конструкции толкнуло прочитанное на форуме по DDS замечание, что должны бы существовать и другие высокочастотные делители кроме серий 193 и 500, а также своевременно увиденная схема нового синтезатора для FM2006. После экспериментов родился простой частотомер на микросхемах LMX 2306, ATtiny 2313 и знакосинтезирующим жидкокристаллическом индикаторе BC 1602 со следующими характеристиками:

  • Диапазон измеряемых частот от 300 Гц до 450 МГц
  • Чувствительность от 50 мВ до 200 мВ
  • Минимальный шаг измерения:
  • В диапазоне от 300 Гц до 4,5МГц 1 Гц
  • В диапазоне от 4,5 МГц до 80 МГц 25 Гц
  • В диапазоне от 80 МГц до 450 МГц 100 Гц
  • Время измерения 0,1 сек / 1 сек
  • Точность измерения не хуже 0,007%
  • Напряжение питания 9В…15В
  • Ток потребления (без подсветки индикатора) 20 мА

Описание и настройка схемы (рис.1 ).

Сигнал со входа F поступает на усилительный каскад на транзисторе VT1 с которого расходится на программируемый высокочастотный делитель, входящий в состав микросхемы DD1, а также на движковый переключатель SA1, которым выбирается диапазон измерения (до 4,5МГц / выше 4,5 МГц). Далее сигнал дополнительно усиливается и поступает на микросхему DD2, которая выполняет счет частоты, вывод данных на ЖКИ и управление микросхемой DD1. Питание схемы обеспечивает стабилизатор DA1.

Переключателем SA2 выбирается время счета и соответственно точность измерения. Кнопкой SB1 проводят калибровку частотомера. Для этого на вход F подают образцовую частоту 1 МГц и нажав на SB1 удерживают ее до получения на дисплее ЖКИ показаний максимально близких к 1 МГц. В дальнейшем калибровку можно не проводить.

Также можно использовать стандартную процедуру настройки, подав на вход F любую образцовую частоту и подбором C9 и C10 добиться нужных показаний ЖКИ.

Цепочка D1, R5, R6, C7 совместно с каскадом на транзисторе VT2 расширяет выходящие с микросхемы DD1 импульсы. При подаче на вход F максимально возможной частоты, но не более 450 МГц, подбором резистора R5 добиваются устойчивых показаний ЖКИ (если осциллограф подключить к 9 ножке DD2 – должно быть что-то близкое к меандру). Конденсатор C7 в собранной нами конструкции переместился на коллектор VT2.

Разъем Prog служит для внутрисхемного программирования ATtiny 2313. Если же микросхема будет прошита в программаторе, то разъем не впаивается. Микросхему лучше установить в панельку.

Детали.

Постоянные резисторы и керамические конденсаторы типоразмера 0805 (поверхностный монтаж). Транзистор VT1 КТ368 заменим на КТ399, VT2 КТ368 – на менее высокочастотный КТ315 (с корректировкой платы). Микросхема DD2 ATtiny 2313-20 (с тактовой частотой до 20 МГц) в DIP корпусе установлена со стороны печатных проводников. DA1 (устанавливается также со стороны печати) - любой 5-ти вольтовый стабилизатор с током более 1 А, но если не использовать подсветку ЖКИ, то можно применить и слаботочный 78L05. Кварцевый резонатор Q1 – 11,0592 МГц в любом исполнении. Переключатели SA1 и SA2 – B1561(DPDT) или SS21 с длиной рычажка более 5 мм. Кнопка тактовая SB1 – TS-A1PS (TS-A2PS, TS-A3PS, TS-A4PS, TS-A6PS). Индикатор BC1602 или BC1601, BC1604, а также подобный с контроллером HD-44780 других фирм изготовителей. Проверять соответствие выводов обязательно! Диод VD2 1N4007 заменим на любой с подходящим рабочим током. Разъем питания – серии AUB 3,5 мм стерео или подобный с некоторой корректировкой платы. Для подачи питания используется любой маломощный сетевой адаптер с подходящим напряжением. Сигнал на плату подается по одножильному проводу диаметром примерно 0,8 мм и длиной 5-8 см.

Можно исключить из схемы C4, R4 и переключатель SA1, подключив C8 перемычкой к базе VT2. 6 ножка DD2 должна висеть в воздухе. В таком варианте нижней граничной частотой становится 1,5 МГц.

Печатная плата разведена в Sprint-Layout и изготовлена из одностороннего фольгированного стеклотекстолита (рис. 2 ).

просмотров